Multivariable Calculus | Changing the order of integration.

  Рет қаралды 12,704

Michael Penn

Michael Penn

Күн бұрын

Пікірлер
@shohamsen8986
@shohamsen8986 4 жыл бұрын
Small typo. you wrote (x^2-y^2)^2 in the denominator when discussing the other iterated integral.
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
Thanks! I pinned your comment so everyone else can see the correction (at 7:11)
@shohamsen8986
@shohamsen8986 4 жыл бұрын
@@MichaelPennMath Thanks. :)
@michelebrun613
@michelebrun613 2 жыл бұрын
Minute 11:00. But if a/(x^2+a^2) is positive, the presence of the minus makes the contribution negative (-Arctan(x/a)), so you cannot say that it is greater or equal
@bobzarnke1706
@bobzarnke1706 3 жыл бұрын
To understand exactly why changing the order of integration gives two different results, I set the region of integration to [a,b]x[a,b], instead of [0,1]x[0,1]. Then the first part of the proof above leads to the intermediate result Ia - Ib, where Ia = ∫[a,b] a/(x²+a²) dx and Ib = ∫[a,b] b/(x²+b²) dx, for one order of integration, and Ib - Ia, for the other order. When a > 0, and even for lim(a→0), Ia - Ib = Ib - Ia = 0, so that the integral is well-defined. (Intuitively, the integral should be 0, since f(y,x) = -f(x,y) and the ranges of integration of x and y are equal.) However, when a is exactly 0, Ia is also 0, leaving the result as Ib or -Ib (π/4 or -π/4 when b = 1), depending on the order of integration.
@regulus2033
@regulus2033 Жыл бұрын
I've noticed an interesting thing. If we replace x->y, y->x in integral (let's call it A) then the numerator changes its sign and the denominator and limits doesn't change at all. So A=-A =>A=0. Of course we could say that if the integral converged.
@ДенисЛогвинов-з6е
@ДенисЛогвинов-з6е 4 жыл бұрын
Thanks. Good video. Good luck your channel
@rafael9285
@rafael9285 3 жыл бұрын
Up!
@erfanmohagheghian707
@erfanmohagheghian707 Жыл бұрын
Can you please by any chance do some tough examples on changing the order of triple integral?
@michaelempeigne3519
@michaelempeigne3519 4 жыл бұрын
but how to know when the absolute value of the integral converges ?
@roman_roman_roman
@roman_roman_roman 3 жыл бұрын
11:07 - i guess it's a mistake
@matthewryan4844
@matthewryan4844 3 жыл бұрын
It should say the integral is less than or equal to Integral of 1/2x dx = -lna/2 -> minus infinity i.e. it diverges
@SirBartolomew
@SirBartolomew 3 жыл бұрын
@@matthewryan4844 it's the limit as a goes to zero, not infinity. So - ln(a)/2 does converge to +infinity
@sensei9767
@sensei9767 4 жыл бұрын
How is -a/(x^2+a^2) always positive?
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
The a/(x^2+y^2) is always positive (without the minus sign). Then we are subtracting something that is always positive, so if we remove it we have the stated inequality.
@sensei9767
@sensei9767 4 жыл бұрын
@@MichaelPennMath But why would removing the -a/(x^2+a^2) make the integral smaller
@MichaelPennMath
@MichaelPennMath 4 жыл бұрын
ahh, I noticed my mistake! This makes the inequality go the wrong way. This doesn't change the outcome though as this portion of the integral converges.
@megauser8512
@megauser8512 3 жыл бұрын
@@MichaelPennMath That makes sense (cuz infinity - a finite number still = infinity).
@MrRyanroberson1
@MrRyanroberson1 3 жыл бұрын
To fix the mistake: x >= a for all x in that integral, therefore replacing x with a in the denominator will make a/(x^2+a^2) larger, thus making the integral smaller, and the term is specifically a/2a^2 = 1/(2a). evaluating that integral from a to 1 we get (1-a)/(2a) = 1/(2a) - 1/2 which blows up to infinity alongside the -ln(a)/2
@pacolibre5411
@pacolibre5411 4 жыл бұрын
So if you cannot change the order of integration, does that mean that the integral diverges?
@coc235
@coc235 3 жыл бұрын
It does
@EebstertheGreat
@EebstertheGreat 2 жыл бұрын
Sort of. If we are using Riemann integrals, then yes, I think that is true. The reason is that the value of the integral will depend on the partition used, so it isn't defined. For Lebesgue integrals with unusual measures on spaces that are not σ-finite, or for nonmeasurable functions, or for other cases, this won't necessarily hold. That is, the multiple integral might converge, but it simply doesn't equal either of the iterated integrals (or equals just one of them). For the "normal" case, Fubini's theorem will only fail if both the positive and negative parts of the function have infinite integrals, so it's a case of ∞ - ∞. It's the same thing that happens with conditionally convergent series: the sum depends on the order of the terms. So if there isn't a natural order, then there is no meaningful way to define the sum.
@lindsaywaterman2010
@lindsaywaterman2010 Жыл бұрын
The first two integrals are made much easier if we let x = rcos(theta) and y - rsin(theta) and da y r dr dtheta.
@cicik57
@cicik57 3 жыл бұрын
so the result pi/4 is not valide?
@adrianamor8472
@adrianamor8472 3 жыл бұрын
It follows directly from Fubini's theorem that if both iterated integrals are different, then the double integral must diverge. No need to calculate further. I think the explanation is a bit misleading and this makes the viewer think that the if condition of the theorem is reversed when it's not.
Multivariable Calculus | Green's Theorem Verification Example 1
10:08
what a nice integral!
12:46
Michael Penn
Рет қаралды 8 М.
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
A nice integral.
21:21
Michael Penn
Рет қаралды 44 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
A nice integration trick!
16:30
Michael Penn
Рет қаралды 22 М.
Multivariable Calculus | The extreme value theorem.
22:35
Michael Penn
Рет қаралды 4,1 М.
Multivariable Calculus | Triple integrals over general regions.
15:32
Multivariable Calculus | Stoke's Theorem
20:34
Michael Penn
Рет қаралды 11 М.
Multivariable Calculus | Double integrals over rectangular regions.
16:17
quite a nice couple of problems
12:25
Michael Penn
Рет қаралды 7 М.
Multivariable Calculus | The volume of a torus.
16:24
Michael Penn
Рет қаралды 29 М.