I lost it when you said "this is not 'lol', this is |0|" comedy + maths, you're the best C:
@blackpenredpen6 жыл бұрын
= DDDDDDD
@mannyheffley95514 жыл бұрын
Genius
@ashtonsmith17304 жыл бұрын
|0|
@somebodysomewhere92536 жыл бұрын
*This is not lol* best quote from mathematics
@OonHan6 жыл бұрын
Homework: Why isn't abs(x) differentiable at x=0? Me: "sites this video"
@blackpenredpen6 жыл бұрын
That works!
@deoxal79476 жыл бұрын
Yes, the absolute value function's derivative is undefined at x=0, but there is an alternate definition of the derivative, which will output zero. It is called the symmetric derivative because it takes the limit from both sides simultaneously. The symmetric derivative will also output zero for certain asymptotic functions, such as 1/x^2 at x=0. An easy way of thinking about how it operates is that it takes the average of the two one-sided limits of the derivative of a function. It is for this reason that asymptotic functions will sometimes have a symmetric derivative at a discontinuity, i.e. two limits that approach positive and negative infinity cancel each other out. This is how the TI-83 and TI-84 evaluate derivatives numerically, because it speeds up computation, but it could give you an erroneous answer, so make sure you check that the original function is defined at that point before accepting its result. Graph: www.desmos.com/calculator/scrnikemaa nDeriv( command: tibasicdev.wikidot.com/nderiv Wikipedia page: en.wikipedia.org/wiki/Symmetric_derivative
@duckymomo79356 жыл бұрын
It has two slopes, it’s a contradiction
@jerem33bdx6 жыл бұрын
Mi Les thanks you summed up a 10 minutes video in 1 sentence!
@hashimabbas39776 жыл бұрын
10:36 min video explanation in one single sentence. Thats awesome.
@samarthsai95306 жыл бұрын
Mi Les Well actually it has Infinite slopes , so a mega contradiction
@yusufakn71736 жыл бұрын
The line above me is false. Paradox yay!!..
@DonSolaris6 жыл бұрын
*OMG!* the guy's talking to the ball!!! And i thought i saw everything on the KZbin.
@leydigomezbravo17506 жыл бұрын
Hi. I have been following you for 2 months and I like your videos. I really like the effort you give them and how they get to transmit. Thank you.
@speedspeed1216 жыл бұрын
I have a good handle of my calc classes. When we have study groups, I usually teach everyone on the board the way you and Peyman present stuff. You guys inspire me to make it fun, and competitive.
@banderfargoyl6 жыл бұрын
A function is discontinuous when the left limit doesn't equal the right limit. So you could say that a continuous function is non-differentiable when the left derivative doesn't equal the right one.
@keerthic69254 жыл бұрын
You are telling about the limit of f(x). Here the limit of dy/dx is taken this makes us know whether the given function is differentiable at a particular point or not
@srinivasanveeraraagavan2714 жыл бұрын
By left and right derivative, you actually mean the left and right limits we apply to find the derivative.
@Arthur-so2cd3 жыл бұрын
exactly :)
@yahelck79596 жыл бұрын
You can also find the derivative of sqrt(x^2) and get x/sqrt(x^2). At x=0 the derivative is equal to 0/0 which is undefined.
@slowsatsuma32146 жыл бұрын
Yahel Cohen-Kowalski Yes but what about sqrt((x^2)+1-1)
@chronyx6856 жыл бұрын
Yahel CK use L'H rule since we can use limits here
@FaranAiki4 жыл бұрын
Use L'H
@notar21234 жыл бұрын
@@chronyx685 Using L'H rule on the numerator would be searching for the derivative of sqrt(x^2), and since sqrt(x^2) is the definition of |x| you're going back to the point where you started - finding the derivative of |x|. With other words, using L'H rule is circular reasoning.
@user-mw5tx1el9o6 жыл бұрын
absolutely hated calculus at college but really enjoyed this video. thank you
@blackpenredpen6 жыл бұрын
: )
@VaradMahashabde6 жыл бұрын
We could use the epsilon-omega definition of a derivative and show that (|0|)' = 0. In general then, (|x|)' = { 1 if x > 0, -1 of x < 0, 0 of x = 0}
@scathiebaby6 жыл бұрын
Yes, that would be the function sgn(x) - Actually when you integrate sgn(x) you would end up back at abs(x) so yes, sgn(x) should be the derivative.
@secretsquirrel43756 жыл бұрын
Why didn’t I know about you when I was struggling through calc 2 last semester! 😭
@blackpenredpen6 жыл бұрын
well, now you do! : )
@Abdega6 жыл бұрын
On the bright side, now you are watching him because you want to. Not because you have to
@mannyheffley95514 жыл бұрын
@@Abdega well put!
@twilight77134 жыл бұрын
Pat pat
@twilight77134 жыл бұрын
It's my first semester and I knew, m lucky ig
@weerman446 жыл бұрын
#subbed before you hit 25k :D Your channel has grown so fast the past year! yay
@blackpenredpen6 жыл бұрын
Yay, thank you Weerman44!!
@gregoriousmaths2664 жыл бұрын
I can’t boast the same :( I probably hadn’t heard of calculus last year.
@ChaosPod6 жыл бұрын
Couldn't you differentiate each piece of the function with respect to x and show they are not equal at 0 instead of taking the limit?
@marcioamaral75116 жыл бұрын
But we need a rigorous proof!
@trace86175 жыл бұрын
he “differentiated”, but used the definition of differentiability, rather than just taking the derivative
@qtmeet6 жыл бұрын
I understand what you explained and that in this case the slope at 0 is undetermined because you can consider it having two slopes at that point, and a function can only have one y output, but I was thinking that- Maybe you could write |x| as x*sgn(x) and then the derivative is just sgn(x), and sgn(0)=0
@qtmeet6 жыл бұрын
I dont know though, I don't have enough experience with how calculus and limits work in general
@angelmendez-rivera3516 жыл бұрын
Not quite, no. The problem is that d(|x|)/dx = d(x sign(x))/dx = x*d(sign(x))/dx + sign(x), yet d(sign(x))/dx does not exist. Unless we allow the Dirac delta distribution to act as a derivative, in which case d(sign(x))/dx = 2δ(x), so d(|x|)/dx = 2xδ(x) + sign(x), but at x = 0, xδ(x) is not well defined?
@jaypeethegoat6 жыл бұрын
This example was a very difficult exercise at Panhellenics Exams in Greece in 2017 for the first time in the world!
@WolfgangBrehm3 жыл бұрын
The sign function looks like the derivative of |x| but it is defined at 0 to be 0. When we integrate sign(x) dx we get x sign(x) , which is identical to |x|. So why is the derivative of x sign(x) not equal to sign(x) ?
@idreeskhan-zp5ey3 жыл бұрын
At 7:50 we get negative result just because of the x in the denominator,otherwise |-x|=x is always positive result?
@alanhiguera34846 жыл бұрын
another way to show that abs(x) is not differentiable at 0 is to define abs(x)=sqrt(x^2). differentiating abs with this defintion gives the derivative function as x/abs(x) which is not defined at x=0.
@craig78782 жыл бұрын
Thank you! I was looking everywhere on how understand and do this!
@BionicMexican5 жыл бұрын
My teacher explained this, and pretty well, but seeing it all worked out using alternative def of a derivative really helped! Thanks!
@evreng6 жыл бұрын
Also, we can write abs(x) as 2 functions. For x0, y=x. Then we can look their derivatives and as they are not same, their joint point has no derivative.
@TheZerovirus1000 Жыл бұрын
Thanks a lot! I was soo confused when I saw a negative 1 in the limit of the abs value in my textbook
@sabriath6 жыл бұрын
One side should be clamped in order to make the integration continuous, otherwise you end up with a disjoint when going back.....|x| is not disjointed. In this case, you can actually have both sides use "0" simultaneously, you just have to note which direction: y = {-1 if x=0+ Because if you don't, when someone were to say "what's the integration from 0 to 5" of that function, "0" cannot be evaluated, yet |x| does contain the valid positive area. If someone said to find the area from -5 to 5, you would have to break it up as -5 to 0- and 0+ to 5. etc. etc.
@josuejaime81646 жыл бұрын
I love your intro, Blackpenredpen Yaaaaayy!
@blackpenredpen6 жыл бұрын
Josue Jaime yay!!! Thank you
@sydneydwoskin49504 жыл бұрын
somebody please get this teacher a mic
@nsrgzh10416 жыл бұрын
I didnt watch the video but can we say its not differentiable at 0 because we can have more than 1 line that can pass ONLY through the corner point? (goes back to the tangent line to a curve)
@JamalAhmadMalik6 жыл бұрын
Please, give me conditions of differentiation. Is the function f(x)= arc sinx differentiable at x≥1?
@blackpenredpen6 жыл бұрын
No, bc that's outside of the domain of arcsin(x)
@carultch3 жыл бұрын
For real numbers, no. For complex numbers, yes.
@grubybueno4 жыл бұрын
shouldn't it be "derivable" the title? I'm a little confused about the difference between these two concepts
@ДанилоАнтонів6 жыл бұрын
5:35 it was too complicated!!!
@OonHan6 жыл бұрын
As x is approaching 0 from the *negative* side, the absolute value would be equal to -x (by the definition of the absolute value).
@ДанилоАнтонів6 жыл бұрын
it was a joke...I just can't resist when he explains such trivial things.
@rikschaaf4 жыл бұрын
But with f(x) = |x|, does f''(0) have a value? Is it double differentiable so to speak? Let's try: f''(0) = lim_x->0 ((f'(x) - f'(0))/(x-0)) approached from the positive side: lim_x->0+ (|x|/x - (1))/x = lim_x->0+ ((1-1)/x) = lim_x->0+ 0/x, which is 0 according to wolfram alpha (0/0.0000000001 = 0, following your example) approached from the negative side: lim_x->0- (|x|/x - (-1))/x = lim_x->0- ((-1+1)/x) = lim_x->0- 0/x, which is also 0 So, since lim_x->0+ ((f'(x) - f'(0))/(x-0)) = lim_x->0- ((f'(x) - f'(0))/(x-0)) and both have an exact definition, lim_x->0 ((f'(x) - f'(0))/(x-0)) = 0, aka f''(0) = 0 Did I make any mistakes? EDIT: wolframalfa gives dirac delta function for x =/= 0 and 0 otherwise and dirac delta function = 0 if x=/=0, so basically, f''(0) = 0. I was right :D
@SteamPunkLV6 жыл бұрын
3:14 try using L'Hopital's rule by differentiating the numerator and denominator :)
@AaronQuitta6 жыл бұрын
ansishihi That wouldn't work because then you would get limit x->0 of sgn(x)/1 which wouldn't help you bwecause sgn(0) is undefined. If you tried to use L'Hopital again you would get limit x->0 of 0/0 which is clearly undefined.
@SteamPunkLV6 жыл бұрын
it was a joke, because if you used L'Hopital's rule you would have to differentiate abs(x) again
@AaronQuitta6 жыл бұрын
ansishihi Exactly, it just wasn't clear if you were unaware or joking.
@JamalAhmadMalik6 жыл бұрын
It's sorta saying: If you can't eat a chicken, try eating a chicken.
@SteamPunkLV6 жыл бұрын
pretty much :p
@harshil_1.6184 жыл бұрын
That was very helpful, ty sir☺️
@JamalAhmadMalik6 жыл бұрын
Can you please do a video on differentiation of absolute functions?
@blackpenredpen6 жыл бұрын
I did that in the end of this vid @9:07
@notar21234 жыл бұрын
You can differentiate it using the definition of absolute value (|x + y*i| = sqrt(x^2 + y^2) for complex numbers, for real numbers the imaginary part is always 0 so you just end up with |x| = sqrt(x^2). The derivative of sqrt(x^2) is x/sqrt(x^2), which, interestingly enough, is the same as the signum function (sgn(x)) if x =/= 0.
@thedanko20956 жыл бұрын
So, If I make a tangent at x = 0, the gradient of tangent does not exist? even though a tangent can be made graphically with a zero gradient 🤔 Correct me if I am wrong.
@redsalmon99666 жыл бұрын
Dang... that Doraemon in the intro 😍
@egoreremeev99696 жыл бұрын
With another interpretation of |x| in terms of sgn(x)x, where sgn(x) returns the sign of x, or zero, it will be easier to understand, i think)
@stewarthills93446 жыл бұрын
The derivative of |x| is |x|/x So at x=0 the derivative is undefined
@himanshugupta43956 жыл бұрын
Black pen red pen I have a passage based problem from Limits and functions how can I post my doubt to you , pls help
@blackpenredpen6 жыл бұрын
U can send it to my tweet me and I can take a look.
@General12th6 жыл бұрын
Talk about the Weierstrass function next!
@RAJSINGH-of9iy6 жыл бұрын
Hey i have a doubt.It is not diff at x=0 ,means we can't draw a tangent at x=0.But it seem that we cab draw a tangent which is y=0.Plzz clear my doubt
@angelmendez-rivera3516 жыл бұрын
RAJ SINGH There are infinitely many tangent lines you can draw at x = 0, but the derivative is supposed to be unique. Hence not differentiable.
@trace86175 жыл бұрын
theres 270° of free space below the two functions that tangent lines can be drawn because of the sharp bend
@19-gouthamkumarreddy584 жыл бұрын
Come to me with a sharp pencil and paper,i will show you
@dashboard9876 Жыл бұрын
if its limit does not exists then can it be continous ??
@wowfmomf61266 жыл бұрын
How about using the fact that lim when x-->0 absx over x is zero over zero, so using l'hospital's rule we derive the denominator and numerator.
@wowfmomf61266 жыл бұрын
The derivative of a piece wise function is piece wise function. The derivative of x is just 1. Now we can say lim when x-->0 from the right is 1 over 1 and lim when x-->0 from the left is -1/1 so left hand side does not equal right handside.
@deepjyotibarman24994 жыл бұрын
Sir, you from which country?
@casdinnissen60325 жыл бұрын
BPRP: This limit does not exist because we get 2 different values. Numberphile: Well, we'll just take the average, which is (1-1)/2 = 0 and that's the answer.
@deserteagle30046 жыл бұрын
Made a video about Stoke's theorem
@WhiteDotX6 жыл бұрын
Nice video! Can you do a video explain riemman's integral vs lebesgue's intregral?
@happyllama99006 жыл бұрын
Could someone please explain why this is a contradiction? I'm not quite sure why it doesn't make sense to have two rates of change, especially if the point lies on the function.
@angelmendez-rivera3516 жыл бұрын
Happy Llama It means there are infinitely many tangent lines.
@phoebedraper30465 жыл бұрын
so is the whole function not differentiable or just at that point?
@notar21234 жыл бұрын
Just at the point.
@nicholasyap90006 жыл бұрын
Thanks for the explanation... I have always wanted to know the derivative of that... Now that it is cleared... I have a question... Is it possible to integrate a function that is |x|?
@RishaadKhan2 жыл бұрын
Yes! |x| has 2 cases: -x and x. Integrate each separately and the case depends on if x =
@kye48406 жыл бұрын
With these rules, doesn’t Lim x->0 x/x = 1? Could you explain?
@nathanisbored6 жыл бұрын
yes it does
@trace86175 жыл бұрын
yes. the limit as x->anything of a constant is always equal to the constant. think about it graphically
@wfilms63204 жыл бұрын
thank you for existing!
@kennethgee20046 жыл бұрын
the slope of the tangent is 0 so it is differentiable at 0
@angelmendez-rivera3516 жыл бұрын
Kenneth Gee No, you failed to understand. It has multiple tangent lines, so there are multiple slopes, which is why it is not differentiable.
@ercel20103 жыл бұрын
Then how can we say that x = nπ
@cookiemaria7804 ай бұрын
Does the integral exist at 0 ? If so, why? What are the differences between the criteria for differentiability and integrateability? This has been really confusing me for a while, does anyone have a moment to explain it?
@maxsch.65555 жыл бұрын
Could you say that the derivative of abs(x) is abs(x)/x?
@leo09185 жыл бұрын
Thank you so much! you saved my day.
@morgengabe16 жыл бұрын
Been hitting The gym hard lately
@dildobaggins27594 жыл бұрын
why isnt 0 included in the piecewise function? You have greater than x values and less than x values but you havent done a calculation with I0I/0
@MrQwefty6 жыл бұрын
The function is continuous but its derivative is not continuous
@vahidy20026 жыл бұрын
Wonder if we get any application of this kind of function .
@hhho1926 жыл бұрын
0:03 what the hell was that.....a multi coloured Doreman..?
@tamoghnamaitra99013 жыл бұрын
Awesome 😊. Really helped
@noahniederklein80813 жыл бұрын
The absolute value of 0 isn't a joke guys, stop laughing
@kenichimori85336 жыл бұрын
f(3) + f(2) = f(1)
@sardarbekomurbekov10306 жыл бұрын
Nice proof
@blackpenredpen6 жыл бұрын
: )
@OtherTheDave6 жыл бұрын
What’s wrong with saying “f'(0) = [-1, 1]”?
@angelmendez-rivera3516 жыл бұрын
OtherTheDave “It’s not a number”.
@angelmendez-rivera3516 жыл бұрын
Truth be told, there is nothing wrong with it, it’s just that in calculus, they are really stingy about things
@bootcamp66284 жыл бұрын
But |x^odd power| except 1 is differentiable at x=0...y this??
@adi78283 жыл бұрын
IIT be like : Hmmm, I bet students didn't know this . Let's make an advance question 😈😈😈
@roger727156 жыл бұрын
Thanks..it helped!
@blackpenredpen6 жыл бұрын
Yay!!!
@BedrockBlocker6 жыл бұрын
I know this is dangerous territory, but couldn't you say the limit has two values?
@angelmendez-rivera3516 жыл бұрын
David Birkenmayer No. By definition, limits are single-values.
How can the function be continuous at x=0 if the left and right limit doesn't agree? Isn't the equality of the left and right limit a condition for continuity?
@davidgould94316 жыл бұрын
The function f(x) = |x| is continuous at x=0 because both limits (from -ve and from +ve) of f(x) tend to 0. It's the derivative, f'(x), that tends to different values from each side, namely -1 from the left and +1 from the right.
@OonHan6 жыл бұрын
Hi!
@raghavvishwanath65706 жыл бұрын
#subbed since before you even hit 50k
@blackpenredpen6 жыл бұрын
yay, thank you!!
@AhnafAbdullah5 жыл бұрын
Same
@animeonguitar38504 жыл бұрын
he used blue pen too
@alanturingtesla6 жыл бұрын
Well, in machine learning you set it to be whatever, it does not really matter. Ah, engineers...
@naseebullah54765 жыл бұрын
great job
@raghavvishwanath65706 жыл бұрын
This is not lol😂😂
@blackpenredpen6 жыл бұрын
: )
@leemonsyzure60106 жыл бұрын
so you could just write the derivative of abs(x) as abs(x)/x couldn't you?
@emiliadaria6 жыл бұрын
Math is the best, isn't it? 😀 #YAY
@blackpenredpen6 жыл бұрын
Yay!
@VonUndZuCaesar6 жыл бұрын
Does the 2nd gradient exists at x=0 for the absolute function?
@angelmendez-rivera3516 жыл бұрын
TheCaesar2011 no
@Dalton12946 жыл бұрын
#subbed I enjoy watching your videos
@Владимир-н8я1г5 жыл бұрын
Thanks
@snbeast95456 жыл бұрын
What'd happen if you used the actual definition of absolute value (which is the radius of the polar form)?
@notar21234 жыл бұрын
As I've just said on another comment, since this is dealing with real numbers, you'd get |x| = sqrt(x^2). If you differentiate sqrt(x^2) you get x/sqrt(x^2), so obviously sqrt(x^2) has to be not equal to 0, which again means x cannot be 0. You get the same thing basically.
@anthonySung__3 жыл бұрын
The only thing I learnt from this video: |0| is not lol
@giovannimariotte49934 жыл бұрын
Very interesting
@ListentoGallegos6 жыл бұрын
so the derivative of abs(x) exists but just not at x=0?
@debrajbanerjee92766 жыл бұрын
So now you will change your profile picture by doramon
@AlgyCuber6 жыл бұрын
hi already #subbed like 3 months ago
@blackpenredpen6 жыл бұрын
Algy Cuber yay!!!!
@friendlydragon89996 жыл бұрын
I just love calculus.
@randomtraveller70835 жыл бұрын
Dragon
@MetallicDETHmaiden6 жыл бұрын
its not dable, isnt it xD
@وريانهاد3 жыл бұрын
Is it differentiable at x=3 ??? I think yes
@ShyamSingh-ui4ih3 жыл бұрын
Good
@SeriousApache6 жыл бұрын
You still using finger
@mathematicstvc60006 жыл бұрын
Hi
@livebyfaithnotbysight91346 жыл бұрын
Thank you!!! :)
@Bluedragon25136 жыл бұрын
It's a 5 guys
@tranquillities12056 жыл бұрын
first of all, |X| doesn't not equal -X for values of X
@angelmendez-rivera3516 жыл бұрын
l l Holy shit, you are so stupid. It’s pretty clear you haven’t picked up a book. if x < 0, then |x| does indeed equal -x, because if x < 0, then -x > 0, which means -x is positive. Geez. “But convince yourself of these facts before making another video.” How about you get a degree and convince yourself of any facts st all before you ever write another comment,
@forgedwithsteel4 жыл бұрын
my man you are confused, multiplying an x that is less than 0 by -1 gives you the same value but positive. which is the answer to |x| of any negative number. |x| is just the distance from the origin on a graph lol