Why isn't abs(x) differentiable at x=0? (definition of derivative)

  Рет қаралды 76,357

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 208
@notspaso6644
@notspaso6644 6 жыл бұрын
I lost it when you said "this is not 'lol', this is |0|" comedy + maths, you're the best C:
@blackpenredpen
@blackpenredpen 6 жыл бұрын
= DDDDDDD
@mannyheffley9551
@mannyheffley9551 4 жыл бұрын
Genius
@ashtonsmith1730
@ashtonsmith1730 4 жыл бұрын
|0|
@somebodysomewhere9253
@somebodysomewhere9253 6 жыл бұрын
*This is not lol* best quote from mathematics
@OonHan
@OonHan 6 жыл бұрын
Homework: Why isn't abs(x) differentiable at x=0? Me: "sites this video"
@blackpenredpen
@blackpenredpen 6 жыл бұрын
That works!
@deoxal7947
@deoxal7947 6 жыл бұрын
Yes, the absolute value function's derivative is undefined at x=0, but there is an alternate definition of the derivative, which will output zero. It is called the symmetric derivative because it takes the limit from both sides simultaneously. The symmetric derivative will also output zero for certain asymptotic functions, such as 1/x^2 at x=0. An easy way of thinking about how it operates is that it takes the average of the two one-sided limits of the derivative of a function. It is for this reason that asymptotic functions will sometimes have a symmetric derivative at a discontinuity, i.e. two limits that approach positive and negative infinity cancel each other out. This is how the TI-83 and TI-84 evaluate derivatives numerically, because it speeds up computation, but it could give you an erroneous answer, so make sure you check that the original function is defined at that point before accepting its result. Graph: www.desmos.com/calculator/scrnikemaa nDeriv( command: tibasicdev.wikidot.com/nderiv Wikipedia page: en.wikipedia.org/wiki/Symmetric_derivative
@duckymomo7935
@duckymomo7935 6 жыл бұрын
It has two slopes, it’s a contradiction
@jerem33bdx
@jerem33bdx 6 жыл бұрын
Mi Les thanks you summed up a 10 minutes video in 1 sentence!
@hashimabbas3977
@hashimabbas3977 6 жыл бұрын
10:36 min video explanation in one single sentence. Thats awesome.
@samarthsai9530
@samarthsai9530 6 жыл бұрын
Mi Les Well actually it has Infinite slopes , so a mega contradiction
@yusufakn7173
@yusufakn7173 6 жыл бұрын
The line above me is false. Paradox yay!!..
@DonSolaris
@DonSolaris 6 жыл бұрын
*OMG!* the guy's talking to the ball!!! And i thought i saw everything on the KZbin.
@leydigomezbravo1750
@leydigomezbravo1750 6 жыл бұрын
Hi. I have been following you for 2 months and I like your videos. I really like the effort you give them and how they get to transmit. Thank you.
@speedspeed121
@speedspeed121 6 жыл бұрын
I have a good handle of my calc classes. When we have study groups, I usually teach everyone on the board the way you and Peyman present stuff. You guys inspire me to make it fun, and competitive.
@banderfargoyl
@banderfargoyl 6 жыл бұрын
A function is discontinuous when the left limit doesn't equal the right limit. So you could say that a continuous function is non-differentiable when the left derivative doesn't equal the right one.
@keerthic6925
@keerthic6925 4 жыл бұрын
You are telling about the limit of f(x). Here the limit of dy/dx is taken this makes us know whether the given function is differentiable at a particular point or not
@srinivasanveeraraagavan271
@srinivasanveeraraagavan271 4 жыл бұрын
By left and right derivative, you actually mean the left and right limits we apply to find the derivative.
@Arthur-so2cd
@Arthur-so2cd 3 жыл бұрын
exactly :)
@yahelck7959
@yahelck7959 6 жыл бұрын
You can also find the derivative of sqrt(x^2) and get x/sqrt(x^2). At x=0 the derivative is equal to 0/0 which is undefined.
@slowsatsuma3214
@slowsatsuma3214 6 жыл бұрын
Yahel Cohen-Kowalski Yes but what about sqrt((x^2)+1-1)
@chronyx685
@chronyx685 6 жыл бұрын
Yahel CK use L'H rule since we can use limits here
@FaranAiki
@FaranAiki 4 жыл бұрын
Use L'H
@notar2123
@notar2123 4 жыл бұрын
@@chronyx685 Using L'H rule on the numerator would be searching for the derivative of sqrt(x^2), and since sqrt(x^2) is the definition of |x| you're going back to the point where you started - finding the derivative of |x|. With other words, using L'H rule is circular reasoning.
@user-mw5tx1el9o
@user-mw5tx1el9o 6 жыл бұрын
absolutely hated calculus at college but really enjoyed this video. thank you
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@VaradMahashabde
@VaradMahashabde 6 жыл бұрын
We could use the epsilon-omega definition of a derivative and show that (|0|)' = 0. In general then, (|x|)' = { 1 if x > 0, -1 of x < 0, 0 of x = 0}
@scathiebaby
@scathiebaby 6 жыл бұрын
Yes, that would be the function sgn(x) - Actually when you integrate sgn(x) you would end up back at abs(x) so yes, sgn(x) should be the derivative.
@secretsquirrel4375
@secretsquirrel4375 6 жыл бұрын
Why didn’t I know about you when I was struggling through calc 2 last semester! 😭
@blackpenredpen
@blackpenredpen 6 жыл бұрын
well, now you do! : )
@Abdega
@Abdega 6 жыл бұрын
On the bright side, now you are watching him because you want to. Not because you have to
@mannyheffley9551
@mannyheffley9551 4 жыл бұрын
@@Abdega well put!
@twilight7713
@twilight7713 4 жыл бұрын
Pat pat
@twilight7713
@twilight7713 4 жыл бұрын
It's my first semester and I knew, m lucky ig
@weerman44
@weerman44 6 жыл бұрын
#subbed before you hit 25k :D Your channel has grown so fast the past year! yay
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay, thank you Weerman44!!
@gregoriousmaths266
@gregoriousmaths266 4 жыл бұрын
I can’t boast the same :( I probably hadn’t heard of calculus last year.
@ChaosPod
@ChaosPod 6 жыл бұрын
Couldn't you differentiate each piece of the function with respect to x and show they are not equal at 0 instead of taking the limit?
@marcioamaral7511
@marcioamaral7511 6 жыл бұрын
But we need a rigorous proof!
@trace8617
@trace8617 5 жыл бұрын
he “differentiated”, but used the definition of differentiability, rather than just taking the derivative
@qtmeet
@qtmeet 6 жыл бұрын
I understand what you explained and that in this case the slope at 0 is undetermined because you can consider it having two slopes at that point, and a function can only have one y output, but I was thinking that- Maybe you could write |x| as x*sgn(x) and then the derivative is just sgn(x), and sgn(0)=0
@qtmeet
@qtmeet 6 жыл бұрын
I dont know though, I don't have enough experience with how calculus and limits work in general
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Not quite, no. The problem is that d(|x|)/dx = d(x sign(x))/dx = x*d(sign(x))/dx + sign(x), yet d(sign(x))/dx does not exist. Unless we allow the Dirac delta distribution to act as a derivative, in which case d(sign(x))/dx = 2δ(x), so d(|x|)/dx = 2xδ(x) + sign(x), but at x = 0, xδ(x) is not well defined?
@jaypeethegoat
@jaypeethegoat 6 жыл бұрын
This example was a very difficult exercise at Panhellenics Exams in Greece in 2017 for the first time in the world!
@WolfgangBrehm
@WolfgangBrehm 3 жыл бұрын
The sign function looks like the derivative of |x| but it is defined at 0 to be 0. When we integrate sign(x) dx we get x sign(x) , which is identical to |x|. So why is the derivative of x sign(x) not equal to sign(x) ?
@idreeskhan-zp5ey
@idreeskhan-zp5ey 3 жыл бұрын
At 7:50 we get negative result just because of the x in the denominator,otherwise |-x|=x is always positive result?
@alanhiguera3484
@alanhiguera3484 6 жыл бұрын
another way to show that abs(x) is not differentiable at 0 is to define abs(x)=sqrt(x^2). differentiating abs with this defintion gives the derivative function as x/abs(x) which is not defined at x=0.
@craig7878
@craig7878 2 жыл бұрын
Thank you! I was looking everywhere on how understand and do this!
@BionicMexican
@BionicMexican 5 жыл бұрын
My teacher explained this, and pretty well, but seeing it all worked out using alternative def of a derivative really helped! Thanks!
@evreng
@evreng 6 жыл бұрын
Also, we can write abs(x) as 2 functions. For x0, y=x. Then we can look their derivatives and as they are not same, their joint point has no derivative.
@TheZerovirus1000
@TheZerovirus1000 Жыл бұрын
Thanks a lot! I was soo confused when I saw a negative 1 in the limit of the abs value in my textbook
@sabriath
@sabriath 6 жыл бұрын
One side should be clamped in order to make the integration continuous, otherwise you end up with a disjoint when going back.....|x| is not disjointed. In this case, you can actually have both sides use "0" simultaneously, you just have to note which direction: y = {-1 if x=0+ Because if you don't, when someone were to say "what's the integration from 0 to 5" of that function, "0" cannot be evaluated, yet |x| does contain the valid positive area. If someone said to find the area from -5 to 5, you would have to break it up as -5 to 0- and 0+ to 5. etc. etc.
@josuejaime8164
@josuejaime8164 6 жыл бұрын
I love your intro, Blackpenredpen Yaaaaayy!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Josue Jaime yay!!! Thank you
@sydneydwoskin4950
@sydneydwoskin4950 4 жыл бұрын
somebody please get this teacher a mic
@nsrgzh1041
@nsrgzh1041 6 жыл бұрын
I didnt watch the video but can we say its not differentiable at 0 because we can have more than 1 line that can pass ONLY through the corner point? (goes back to the tangent line to a curve)
@JamalAhmadMalik
@JamalAhmadMalik 6 жыл бұрын
Please, give me conditions of differentiation. Is the function f(x)= arc sinx differentiable at x≥1?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
No, bc that's outside of the domain of arcsin(x)
@carultch
@carultch 3 жыл бұрын
For real numbers, no. For complex numbers, yes.
@grubybueno
@grubybueno 4 жыл бұрын
shouldn't it be "derivable" the title? I'm a little confused about the difference between these two concepts
@ДанилоАнтонів
@ДанилоАнтонів 6 жыл бұрын
5:35 it was too complicated!!!
@OonHan
@OonHan 6 жыл бұрын
As x is approaching 0 from the *negative* side, the absolute value would be equal to -x (by the definition of the absolute value).
@ДанилоАнтонів
@ДанилоАнтонів 6 жыл бұрын
it was a joke...I just can't resist when he explains such trivial things.
@rikschaaf
@rikschaaf 4 жыл бұрын
But with f(x) = |x|, does f''(0) have a value? Is it double differentiable so to speak? Let's try: f''(0) = lim_x->0 ((f'(x) - f'(0))/(x-0)) approached from the positive side: lim_x->0+ (|x|/x - (1))/x = lim_x->0+ ((1-1)/x) = lim_x->0+ 0/x, which is 0 according to wolfram alpha (0/0.0000000001 = 0, following your example) approached from the negative side: lim_x->0- (|x|/x - (-1))/x = lim_x->0- ((-1+1)/x) = lim_x->0- 0/x, which is also 0 So, since lim_x->0+ ((f'(x) - f'(0))/(x-0)) = lim_x->0- ((f'(x) - f'(0))/(x-0)) and both have an exact definition, lim_x->0 ((f'(x) - f'(0))/(x-0)) = 0, aka f''(0) = 0 Did I make any mistakes? EDIT: wolframalfa gives dirac delta function for x =/= 0 and 0 otherwise and dirac delta function = 0 if x=/=0, so basically, f''(0) = 0. I was right :D
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
3:14 try using L'Hopital's rule by differentiating the numerator and denominator :)
@AaronQuitta
@AaronQuitta 6 жыл бұрын
ansishihi That wouldn't work because then you would get limit x->0 of sgn(x)/1 which wouldn't help you bwecause sgn(0) is undefined. If you tried to use L'Hopital again you would get limit x->0 of 0/0 which is clearly undefined.
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
it was a joke, because if you used L'Hopital's rule you would have to differentiate abs(x) again
@AaronQuitta
@AaronQuitta 6 жыл бұрын
ansishihi Exactly, it just wasn't clear if you were unaware or joking.
@JamalAhmadMalik
@JamalAhmadMalik 6 жыл бұрын
It's sorta saying: If you can't eat a chicken, try eating a chicken.
@SteamPunkLV
@SteamPunkLV 6 жыл бұрын
pretty much :p
@harshil_1.618
@harshil_1.618 4 жыл бұрын
That was very helpful, ty sir☺️
@JamalAhmadMalik
@JamalAhmadMalik 6 жыл бұрын
Can you please do a video on differentiation of absolute functions?
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I did that in the end of this vid @9:07
@notar2123
@notar2123 4 жыл бұрын
You can differentiate it using the definition of absolute value (|x + y*i| = sqrt(x^2 + y^2) for complex numbers, for real numbers the imaginary part is always 0 so you just end up with |x| = sqrt(x^2). The derivative of sqrt(x^2) is x/sqrt(x^2), which, interestingly enough, is the same as the signum function (sgn(x)) if x =/= 0.
@thedanko2095
@thedanko2095 6 жыл бұрын
So, If I make a tangent at x = 0, the gradient of tangent does not exist? even though a tangent can be made graphically with a zero gradient 🤔 Correct me if I am wrong.
@redsalmon9966
@redsalmon9966 6 жыл бұрын
Dang... that Doraemon in the intro 😍
@egoreremeev9969
@egoreremeev9969 6 жыл бұрын
With another interpretation of |x| in terms of sgn(x)x, where sgn(x) returns the sign of x, or zero, it will be easier to understand, i think)
@stewarthills9344
@stewarthills9344 6 жыл бұрын
The derivative of |x| is |x|/x So at x=0 the derivative is undefined
@himanshugupta4395
@himanshugupta4395 6 жыл бұрын
Black pen red pen I have a passage based problem from Limits and functions how can I post my doubt to you , pls help
@blackpenredpen
@blackpenredpen 6 жыл бұрын
U can send it to my tweet me and I can take a look.
@General12th
@General12th 6 жыл бұрын
Talk about the Weierstrass function next!
@RAJSINGH-of9iy
@RAJSINGH-of9iy 6 жыл бұрын
Hey i have a doubt.It is not diff at x=0 ,means we can't draw a tangent at x=0.But it seem that we cab draw a tangent which is y=0.Plzz clear my doubt
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
RAJ SINGH There are infinitely many tangent lines you can draw at x = 0, but the derivative is supposed to be unique. Hence not differentiable.
@trace8617
@trace8617 5 жыл бұрын
theres 270° of free space below the two functions that tangent lines can be drawn because of the sharp bend
@19-gouthamkumarreddy58
@19-gouthamkumarreddy58 4 жыл бұрын
Come to me with a sharp pencil and paper,i will show you
@dashboard9876
@dashboard9876 Жыл бұрын
if its limit does not exists then can it be continous ??
@wowfmomf6126
@wowfmomf6126 6 жыл бұрын
How about using the fact that lim when x-->0 absx over x is zero over zero, so using l'hospital's rule we derive the denominator and numerator.
@wowfmomf6126
@wowfmomf6126 6 жыл бұрын
The derivative of a piece wise function is piece wise function. The derivative of x is just 1. Now we can say lim when x-->0 from the right is 1 over 1 and lim when x-->0 from the left is -1/1 so left hand side does not equal right handside.
@deepjyotibarman2499
@deepjyotibarman2499 4 жыл бұрын
Sir, you from which country?
@casdinnissen6032
@casdinnissen6032 5 жыл бұрын
BPRP: This limit does not exist because we get 2 different values. Numberphile: Well, we'll just take the average, which is (1-1)/2 = 0 and that's the answer.
@deserteagle3004
@deserteagle3004 6 жыл бұрын
Made a video about Stoke's theorem
@WhiteDotX
@WhiteDotX 6 жыл бұрын
Nice video! Can you do a video explain riemman's integral vs lebesgue's intregral?
@happyllama9900
@happyllama9900 6 жыл бұрын
Could someone please explain why this is a contradiction? I'm not quite sure why it doesn't make sense to have two rates of change, especially if the point lies on the function.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Happy Llama It means there are infinitely many tangent lines.
@phoebedraper3046
@phoebedraper3046 5 жыл бұрын
so is the whole function not differentiable or just at that point?
@notar2123
@notar2123 4 жыл бұрын
Just at the point.
@nicholasyap9000
@nicholasyap9000 6 жыл бұрын
Thanks for the explanation... I have always wanted to know the derivative of that... Now that it is cleared... I have a question... Is it possible to integrate a function that is |x|?
@RishaadKhan
@RishaadKhan 2 жыл бұрын
Yes! |x| has 2 cases: -x and x. Integrate each separately and the case depends on if x =
@kye4840
@kye4840 6 жыл бұрын
With these rules, doesn’t Lim x->0 x/x = 1? Could you explain?
@nathanisbored
@nathanisbored 6 жыл бұрын
yes it does
@trace8617
@trace8617 5 жыл бұрын
yes. the limit as x->anything of a constant is always equal to the constant. think about it graphically
@wfilms6320
@wfilms6320 4 жыл бұрын
thank you for existing!
@kennethgee2004
@kennethgee2004 6 жыл бұрын
the slope of the tangent is 0 so it is differentiable at 0
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Kenneth Gee No, you failed to understand. It has multiple tangent lines, so there are multiple slopes, which is why it is not differentiable.
@ercel2010
@ercel2010 3 жыл бұрын
Then how can we say that x = nπ
@cookiemaria780
@cookiemaria780 4 ай бұрын
Does the integral exist at 0 ? If so, why? What are the differences between the criteria for differentiability and integrateability? This has been really confusing me for a while, does anyone have a moment to explain it?
@maxsch.6555
@maxsch.6555 5 жыл бұрын
Could you say that the derivative of abs(x) is abs(x)/x?
@leo0918
@leo0918 5 жыл бұрын
Thank you so much! you saved my day.
@morgengabe1
@morgengabe1 6 жыл бұрын
Been hitting The gym hard lately
@dildobaggins2759
@dildobaggins2759 4 жыл бұрын
why isnt 0 included in the piecewise function? You have greater than x values and less than x values but you havent done a calculation with I0I/0
@MrQwefty
@MrQwefty 6 жыл бұрын
The function is continuous but its derivative is not continuous
@vahidy2002
@vahidy2002 6 жыл бұрын
Wonder if we get any application of this kind of function .
@hhho192
@hhho192 6 жыл бұрын
0:03 what the hell was that.....a multi coloured Doreman..?
@tamoghnamaitra9901
@tamoghnamaitra9901 3 жыл бұрын
Awesome 😊. Really helped
@noahniederklein8081
@noahniederklein8081 3 жыл бұрын
The absolute value of 0 isn't a joke guys, stop laughing
@kenichimori8533
@kenichimori8533 6 жыл бұрын
f(3) + f(2) = f(1)
@sardarbekomurbekov1030
@sardarbekomurbekov1030 6 жыл бұрын
Nice proof
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@OtherTheDave
@OtherTheDave 6 жыл бұрын
What’s wrong with saying “f'(0) = [-1, 1]”?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
OtherTheDave “It’s not a number”.
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
Truth be told, there is nothing wrong with it, it’s just that in calculus, they are really stingy about things
@bootcamp6628
@bootcamp6628 4 жыл бұрын
But |x^odd power| except 1 is differentiable at x=0...y this??
@adi7828
@adi7828 3 жыл бұрын
IIT be like : Hmmm, I bet students didn't know this . Let's make an advance question 😈😈😈
@roger72715
@roger72715 6 жыл бұрын
Thanks..it helped!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!!
@BedrockBlocker
@BedrockBlocker 6 жыл бұрын
I know this is dangerous territory, but couldn't you say the limit has two values?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
David Birkenmayer No. By definition, limits are single-values.
@purim_sakamoto
@purim_sakamoto 3 жыл бұрын
ほむほむ negのとこでは-1に傾いてて、posのとこでは1に傾いてるけど 0のとこでは別に水平でもなんでもなく、どっち向いてるかわかんない!と うううーーーんもにょる これリーマン系だからそうであって、他の系では定義されるんじゃないかってすっごい気になる イライラしちゃうわァ・・・
@zackiz
@zackiz 6 жыл бұрын
How can the function be continuous at x=0 if the left and right limit doesn't agree? Isn't the equality of the left and right limit a condition for continuity?
@davidgould9431
@davidgould9431 6 жыл бұрын
The function f(x) = |x| is continuous at x=0 because both limits (from -ve and from +ve) of f(x) tend to 0. It's the derivative, f'(x), that tends to different values from each side, namely -1 from the left and +1 from the right.
@OonHan
@OonHan 6 жыл бұрын
Hi!
@raghavvishwanath6570
@raghavvishwanath6570 6 жыл бұрын
#subbed since before you even hit 50k
@blackpenredpen
@blackpenredpen 6 жыл бұрын
yay, thank you!!
@AhnafAbdullah
@AhnafAbdullah 5 жыл бұрын
Same
@animeonguitar3850
@animeonguitar3850 4 жыл бұрын
he used blue pen too
@alanturingtesla
@alanturingtesla 6 жыл бұрын
Well, in machine learning you set it to be whatever, it does not really matter. Ah, engineers...
@naseebullah5476
@naseebullah5476 5 жыл бұрын
great job
@raghavvishwanath6570
@raghavvishwanath6570 6 жыл бұрын
This is not lol😂😂
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: )
@leemonsyzure6010
@leemonsyzure6010 6 жыл бұрын
so you could just write the derivative of abs(x) as abs(x)/x couldn't you?
@emiliadaria
@emiliadaria 6 жыл бұрын
Math is the best, isn't it? 😀 #YAY
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!
@VonUndZuCaesar
@VonUndZuCaesar 6 жыл бұрын
Does the 2nd gradient exists at x=0 for the absolute function?
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
TheCaesar2011 no
@Dalton1294
@Dalton1294 6 жыл бұрын
#subbed I enjoy watching your videos
@Владимир-н8я1г
@Владимир-н8я1г 5 жыл бұрын
Thanks
@snbeast9545
@snbeast9545 6 жыл бұрын
What'd happen if you used the actual definition of absolute value (which is the radius of the polar form)?
@notar2123
@notar2123 4 жыл бұрын
As I've just said on another comment, since this is dealing with real numbers, you'd get |x| = sqrt(x^2). If you differentiate sqrt(x^2) you get x/sqrt(x^2), so obviously sqrt(x^2) has to be not equal to 0, which again means x cannot be 0. You get the same thing basically.
@anthonySung__
@anthonySung__ 3 жыл бұрын
The only thing I learnt from this video: |0| is not lol
@giovannimariotte4993
@giovannimariotte4993 4 жыл бұрын
Very interesting
@ListentoGallegos
@ListentoGallegos 6 жыл бұрын
so the derivative of abs(x) exists but just not at x=0?
@debrajbanerjee9276
@debrajbanerjee9276 6 жыл бұрын
So now you will change your profile picture by doramon
@AlgyCuber
@AlgyCuber 6 жыл бұрын
hi already #subbed like 3 months ago
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Algy Cuber yay!!!!
@friendlydragon8999
@friendlydragon8999 6 жыл бұрын
I just love calculus.
@randomtraveller7083
@randomtraveller7083 5 жыл бұрын
Dragon
@MetallicDETHmaiden
@MetallicDETHmaiden 6 жыл бұрын
its not dable, isnt it xD
@وريانهاد
@وريانهاد 3 жыл бұрын
Is it differentiable at x=3 ??? I think yes
@ShyamSingh-ui4ih
@ShyamSingh-ui4ih 3 жыл бұрын
Good
@SeriousApache
@SeriousApache 6 жыл бұрын
You still using finger
@mathematicstvc6000
@mathematicstvc6000 6 жыл бұрын
Hi
@livebyfaithnotbysight9134
@livebyfaithnotbysight9134 6 жыл бұрын
Thank you!!! :)
@Bluedragon2513
@Bluedragon2513 6 жыл бұрын
It's a 5 guys
@tranquillities1205
@tranquillities1205 6 жыл бұрын
first of all, |X| doesn't not equal -X for values of X
@angelmendez-rivera351
@angelmendez-rivera351 6 жыл бұрын
l l Holy shit, you are so stupid. It’s pretty clear you haven’t picked up a book. if x < 0, then |x| does indeed equal -x, because if x < 0, then -x > 0, which means -x is positive. Geez. “But convince yourself of these facts before making another video.” How about you get a degree and convince yourself of any facts st all before you ever write another comment,
@forgedwithsteel
@forgedwithsteel 4 жыл бұрын
my man you are confused, multiplying an x that is less than 0 by -1 gives you the same value but positive. which is the answer to |x| of any negative number. |x| is just the distance from the origin on a graph lol
@kishorbhushan8292
@kishorbhushan8292 5 жыл бұрын
I love doraemon
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 355 М.
Derivative  of absolute value  function
8:04
Prime Newtons
Рет қаралды 68 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Why a function is not differentiable at the kink or cusp
17:20
Prime Newtons
Рет қаралды 6 М.
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 696 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 628 М.
finally 0^0 approaches 0 (after 6 years!)
14:50
blackpenredpen
Рет қаралды 494 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
Proof: Derivative of ln(x) = 1/x by First Principles
8:14
MasterWuMathematics
Рет қаралды 40 М.
integral of sqrt(tan(x)) by brute force
19:41
blackpenredpen
Рет қаралды 553 М.
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН