pourquoi je me reveille avec cette video a chaque fois 😅😅
@wawa71243 ай бұрын
C'est marrant parce que moi je m'endors sur cette vidéo 🙆🏻♀️😂
@wawa7236Ай бұрын
@@wawa7124héhé on a le même pseudo 🎉
@etruchet26 күн бұрын
Tous les soirs je m'endors sur une vidéo random et je me réveille toujours avec cette vidéo ! C'est un truc de fou comme elle plaît à l'algo youtube cette vidéo !
@Asterdusud26 күн бұрын
@@etruchet exactement ce qu'il vient de m'arriver
@pierrelordonova436026 күн бұрын
moi c'est pas forcément celle-ci mais c'est de sur sa chaine que je me réveille xD
@jonathanengelinus70562 жыл бұрын
J'ai autant apprécié cette trilogie que celle de Star Wars (pour vrai). Merci beaucoup d'avoir pris le temps de rendre tout cela vivant.
@antoinebrgt2 жыл бұрын
Merci, quel compliment !!
@Wolf-if1bt Жыл бұрын
La question est de savoir qui sont les Sith dans cette trilogie. Je verrais bien les mal-aimés sédénions dans ce rôle...
Deux ans plus tard, j'ai revu la série. C'est génial, j'ai vraiment appris beaucoup.
@antoinebrgt Жыл бұрын
Tu veux dire que tu l'avais vue il y a deux ans, et revue maintenant ? Oui c'est le genre d'expérience qui est assez satisfaisante, on se rend compte d'à quel point on a progressé dans l'intervalle !
@observing7312 Жыл бұрын
@@antoinebrgt exactement! Les notions étaient déjà un peu digérées et je suis à même de retenir beaucoup de détails de ta présentation.
@antoinebrgt Жыл бұрын
@@observing7312 super, content que ça te soit utile!
@observing7312 Жыл бұрын
Tes vidéos sont vraiment supers. J'imagine que ça te prend beaucoup de temps mais en tant que spectateur, c'est un régal (tu arrives à garder des spectateurs en ligne pendant 12h!). Penses-tu un jour faire un 'cours' sur la théorie des groupes de symétrie ? C'est un peu 'basique' au regard des sujets que tu traites, mais je pense que ton regard sur le sujet le rendrait intéressant.
@antoinebrgt Жыл бұрын
@@observing7312 il faudrait voir le contexte, je pense qu'il existe déjà un certain nombre de cours sur les groupes, mais si j'ai l'opportunité (par exemple si je dois l'enseigner à l'Université) je pourrai en faire des vidéos oui! Pour l'instant ce qui me limite est le temps disponible...
@MathieuMoulin3 жыл бұрын
Hoo c'est rigolo de retrouver ces diagrammes ici, j'ai fait un mémoire là-dessus en maitrise il y a 20 ans, en lien avec des produits tensoriels de représentations des groupes finis. J'avais passé un temps fou là-dessus... puis je me suis tourné vers la programmation, Internet... c'est un peu ma madeleine de Proust là de suite, que de souvenirs... Je découvre votre chaine à l'instant, bravo, je pense que je vais y passer du temps, encore merci pour votre travail de partage!
@antoinebrgt3 жыл бұрын
Ah oui ces diagrammes apparaissent dans de nombreux contextes en mathématiques et en physique :) Ici vous parlez de la correspondance de McKay, je pense ! Bon visionnage pour le reste de la chaîne, il y a de quoi y passer un petit moment :D
@MathieuMoulin3 жыл бұрын
@@antoinebrgt Bingo! McKay c'était cela! Oui au départ on devait aussi les retrouver dans d'autres contextes mais je n'ai pas eu le temps d'aller assez loin...
@yassine65752 ай бұрын
Salut, j'ai découvert tes vidéo alors que j'avais laissé KZbin ouvert toute la nuit, au matin, je tombe sur tes contenus, depuis lors tu fait partie de mes Abo ! Tes contenus mets utile pour rappel de ce que j'ai vu en cours et pour la plupart de la découverte. merci pour tes vidéos éducatives, intellectuelles et très pertinentes à nitre époque de désarroi . Continu ainsi ne change rien 😁
@kilopo9583 жыл бұрын
Je suis un doctorant en physique de simulation telque la simulation par dynamique moléculaire. J'adore tes vidéos vraiment.
@antoinebrgt3 жыл бұрын
Merci ! Bon courage pour la thèse !
@Igdrazil Жыл бұрын
Excellent. Une si belle trilogie appelle sa Quadrature, avec une remontée magistrale de l'Hadès labyrinthique de Dynkin, vers cette Lune des Groupes sous le soleil de Serre... En outre cette séparation nette dans le musée des Mathématiques et de la Physique est extrêmement précieuse car trop souvent trop d'amalgames, de raccourcis et de smplifications excessives sont faites lorsqu'on ne veut présenter que le minimum minimorum "directement utile" pour la Physique. Ce faisant on néglige la sublime beauté propre des Mathématiques et l'on abdique en fait devant la profondeur d'une recherche fondamentale en troquant le challenge du "pourquoi Universel" pour le "comment phénoménologique", plus "facile" mais moins métaphysique, moins monadologique pour parler comme Leibnitz. D'autant que tous Universaux, comme l'est cette classification, créé une tension de mystère extrêmement fertile, par le fait même de son universalité méta phénoménologique qui la rend susceptible de surgire dans presque toute application concrète. Cette claire séparation donc des Mathématiques et de la Physique créé ainsi une tension qui génère comme un arc électrique, paradoxalement propice à découvrir les points de jonction, de fusion et de fondamentale intimité entre ces deux facettes... d'une même pièce. Car c'est un peu l'évolution mythique du théâtre grec qui se prolonge ici. Les dieux antiques ce sont déguisés en Structures... Les demi dieux comme Sophus Lie sont l'Achille moderne qui siegent devant la Troie des Quarks. Le Groupe de Renormalisation est l'une des ruses d'Athéna. Et par le cheval de Troie de la classification des groupes simples finis, la Citadelle de Priam tente d'être conquise, après plus de 400 ans de maturation et 40 ans de siège. Et tout ça pour quoi? Pour la belle Hélène évidemment d'Evariste Galois qui l'a poussé à sortir du groupe très distingué des alchimistes, druides et suprêmes magiciens Gauss et Lagrange. Car sous leurs noms variés, d'algèbres, d'espaces vectoriels, de variétés, de modules, de topos,...c'est toujours ce Fil d'Ariane atomique des Groupes, qui est suivi, en en déroulant la fabuleuse moisson, tout comme Didon conquis un royaume avec une toute petite peau de vache... Cette petite peau de vache qui embauma Galois dans sa guirlande de groupes... d'où tout sorti
@fabienleguen3 жыл бұрын
Après visionnage de quasiment toutes les vidéos de la chaîne, on est doté de plusieurs outils : la théorie de Lie qui généralise complètement la notion de symétrie continue, la notion de fibré qui généralise l’invariance de jauge. Les outils plus techniques comme les sommes asymptotiques et l’intégration fonctionnelle (+Analyse complexe notamment théorème des résidus non traitée par la chaîne mais d’autre série existe sur KZbin pour s’autoformer dessus). La caisse à outils semble pleine pour attaquer les théories physiques :-D. Il nous reste d’autres outils à acquérir avant de faire de la physique type TQC ?
@antoinebrgt3 жыл бұрын
J'avais raté ce commentaire ! Oui je commence à avoir parlé de pas mal d'outils, mais il en reste encore beaucoup à voir, pas de crainte de pénurie de ce côté :) Dans les projets à court terme (cette année) je veux parler de mécanique analytique, de monopoles, de théorie des noeuds, et de singularités !
@fabienleguen3 жыл бұрын
@@antoinebrgt hâte de les voir ! J’ai effleuré sans avoir le temps de creuser, la mécanique des matrices d’Heisenberg et son « invention » de la recette de cuisine que constitue la procédure de quantification canonique. Le lien entre le crochet de poisson et relations de commutation etc. Je manque de temps pour creuser via les livres, ce qui est frustrant quand on a envie de comprendre en profondeur les théories physiques, leur histoire et leurs fondements mathématiques. Les vidéos de Scientia Egregia sont excellentes car en quelques heures et de façon agréable, on progresse vite. Beaucoup de textes/vidéos évoquent les monopoles magnétiques mais je n’ai jamais rencontré les dérivations/équations qui permettent de saisir leur pertinence. Vivement la prochaine vidéo !
@antoinebrgt3 жыл бұрын
@@fabienleguen Oui en effet la quantification "canonique" mérite vraiment une vidéo, c'est dans mes listes ! Et pour les monopoles magnétiques il y a de la physique magnifique à faire dessus, ça devrait venir début 2022 je pense !
@marcchamant27622 жыл бұрын
Même en replay le cours est fantastique, MERCI beaucoup de nous faire partager tes connaissances. A+
@antoinebrgt2 жыл бұрын
Merci :) Oui j'espère que le replay est intéressant, il permet d'accélérer les passages ennuyeux et de s’appesantir sur les passages techniques !
@leporcquirit3 жыл бұрын
Je viens de terminer l'écoute de vos anciennes vidéos, non sans éblouissement, comme je vous l'ai déjà indiqué il y a quelques semaines 🤩 Si je devais apporter une suggestion, ce serait celle-ci : réaliser 2 videos de préléminaires mathématiques (sur le modèle de "Autour des différentielles"), l'une consacrée aux espaces hermitiens (du concept général jusqu'à la fonction d'onde), et l'autre consacrée aux tenseurs (en partant là encore du concept le plus général... Que représente un tenseur au fond ?) Encore merci pour le temps que vous accordez à la vulgarisation de sujets aussi pointus et rares 😎
@antoinebrgt3 жыл бұрын
Merci beaucoup, je prends note !
@pierrekilgoretrout3143 Жыл бұрын
2:04:53 Mon objectif: réussir à placer dans une conversation la bijection entre les algèbres de Lie et les diagrammes de Coxeter connexes admissibless 😉 En tout cas vos explications sont très claires, je suis très contente d'être arrivée ici, merci!
@antoinebrgt Жыл бұрын
Ça fait toujours son petit effet au cours d'un dîner en ville!
@laminediatta26102 жыл бұрын
Merci beaucoup 🙏 M. Bourget vous êtes formidable ! Est-ce que vous pourriez faire une vidéo sur les tenseurs ? #ScientiaEgregia ✊
@antoinebrgt2 жыл бұрын
Merci ! J'ai déjà un peu parlé des tenseurs dans mes vidéos sur la relativité générale, ainsi que dans celle intitulée "autour des différentielles".
@fabienleguen3 жыл бұрын
Ce que je trouve le plus stimulant dans cette théorie au final c’est que l’ensemble des groupe de Lie est dénombrable et assez simple à résumer. Question peut être naïve : Sachant que les théories physiques actuelles sont construites à partir de choix initiaux sur les groupes de symétries respectées par la nature et sachant que les groupes de symetrie sont dénombrables, serait-il possible de définir une procédure qui parcours l’ensemble des groupes de symétries existants et qui recrache l’ensemble des théories physiques possibles (ensemble des lagrangiens ?).
@antoinebrgt3 жыл бұрын
Oui, exactement ! C’est en caricaturant un peu exactement mon métier !
@fabienleguen3 жыл бұрын
Merci pour cette série très intéressante ! Après visionnage, je me suis demandé ce qui avait motivé ces mathématiciens à explorer ce domaine. J’ai lu sur Wikipedia que la motivation initiale de Sophus Lie était d’aboutir pour les équations différentielles à une théorie analogue à celle de Galois pour les équations polynomiales. Sachant ça et la puissance de la théorie de Galois en mathématique et dans des applications pratiques du monde réel, je comprend mieux pourquoi tout ce travail a été fait. Ça donne envie de creuser en profondeur la théorie de Galois (je n’en connais que les conclusions et quelques vulgarisations).
@antoinebrgt3 жыл бұрын
Oui je pense que la vision moderne c’est plutôt classifier les symétries possibles (qui peuvent agit sur tout un tas d’objets, dont les équations différentielles mais pas que!). Je ne connais pas vraiment le lien précis avec Galois.
@Wolf-if1bt Жыл бұрын
Je viens de revoir avec delectation votre trilogie sur cette merveilleuse théorie de Lie. Je suis partagée entre l'émerveillement devant tant de beauté et la frustration d'être limitée dans ma capacité à en saisir pleinement toute l'essence. J'admire votre pédagogie : vous défrichez pour nous un sentier escarpé et pentu qui mène à des paysages extraordinaires. Depuis ces hauteurs, une question vertigineuse me hante. Elle est probablement plus métaphysique que physique mais j'aimerais connaître votre avis forcément plus éclairé que le mien. Notre réalité physique est semble-t-il régie par de grands principes concis et esthétiques comme les algèbres de Lie ou encore le principe de moindre action. Ces paradigmes mathématiques sont-ils nécessaires ou contingents ? Peut-on imaginer un Univers contrafactuel qui s'en affranchisse en restant malgré tout cohérent ? À l'opposé, les algèbres de Lie qui sous-tendent le modèle standard sont-elles une pièce incontournable pour permettre l'existence d'une réalité animée par des lois physiques qui suivent une logique qui ne se contredit pas ?
@antoinebrgt Жыл бұрын
Merci pour les compliments ! Sur les questions philosophiques à propos de la contingence du formalisme, je n'ai pas d'opinion bien claire. Il y a un débat à deux niveaux, l'un sur la pertinence mathématique du concept, et l'autre sur la pertinence physique. Je n'ai aucun mal à imaginer un univers qui ne serait pas décrit par une théorie de jauge par exemple, mais en revanche, un univers dans lequel E8 n'existerait pas n'a aucun sens pour moi. Pour le dire de façon plus précise, je dis souvent que toute civilisation extraterrestre mathématiquement intelligente découvrira un jour le groupe E8 (de la même façon qu'elle découvrira les nombres premiers, par exemple).
@Gwens422 жыл бұрын
Salut Antoine, on est bien d'accord dans la définition que tu donnes d'une algèbre à division , les équations a=bx et a=xb ont chacune une unique solution mais x1!=x2 ? (pour que ça marche même si les éléments de E ne commutent pas nescessairement)
@antoinebrgt2 жыл бұрын
Oui, c'est bien ça!
@willyhoussart-QuantumChordsRMS2 ай бұрын
t'es vidéos sont génial juste si tu monte avec première tu as une option simple pour auto couper les blancs entre 2 phrases ça analyse ta piste son et cut les trou de toute ta vidéo en quelques secondes .... ça changerais bcp le rendu car il y a bcp de blancs je trouve qui une fois enlever rendrais tes vidéo plus accrochante encore :) en tout k merci de nous permettre d'apprendre autant : les Octognion c'est génial :)
@MartialartsSpirit-on7ze3 жыл бұрын
Prévoyez vous de faire une vidéo sur la théorie M ? Car je trouve que sur KZbin il n’y a pas beaucoup de personne qui parle du concept de brane, d’action de nambu-gotto, d’action de polyakov etc…
@antoinebrgt3 жыл бұрын
Oui je parlerai de théorie des cordes et de théorie M un jour, dans un futur pas trop éloigné!
@MartialartsSpirit-on7ze3 жыл бұрын
@@antoinebrgt superbe ! Merci pour la réponse !
@stephanevernede81073 жыл бұрын
Merci beaucoup pour cette série passionnante. Concernant l’universalité des mathématiques, l’émergence des mathématiques constructive est un exemple frappant de comment un changement de point de vue peut faire basculer un axiome fondamental et tout un pan des mathématiques avec lui. En se basant sur le langage naturel dire que « si il est faux que A est faux alors A est vrai» est un axiome tout à fait raisonnable. C’est un des axiomes fondamentaux des mathématiques classiques. Cependant pour un ordinateur cet axiome devient « je peux toujours construire un programme qui me donne A a partir d’un programme qui prend en entrée (un programme qui de A produit une contradiction) et qui produit une contradiction ». Beaucoup moins évident comme axiome. Et autant on arrive facilement à faire des portes logiques NAND autant on n’a jamais réalisé de porte logique qui reproduit cet axiome. Une société alien qui n’aurais jamais connu notre langage naturel, mais serais directement passé à l’ordinateur aurai probablement zappé tout un pan des mathématiques classiques. A ce propos est ce que tu t’intéresses à la théorie homotopique des types ? Cette approche fondationelle des mathématiques, ajoute un niveau de correspondance topologique a la correspondance de Curry Howard ( correspondance informatique / mathématique ) Si oui un épisode sur le sujet serait génial
@antoinebrgt3 жыл бұрын
Oui c'est possible, je n'ai pas trop d'avis sur la question du choix des axiomes, les pensées que je donne à la fin de la vidéo ne sont clairement pas à prendre au pied de la lettre. Quant à la théorie homotopique des types non je ne m'y suis pas intéressé plus que ça pour le moment, peut-être un jour prochain !
@samuelblarre45223 жыл бұрын
Merci pour cet épisode que j'ai trouvé assez simple à suivre (surement grace aux infos partagées dans les précédents épisodes) et qui permet d'effleurer des vérités profondes des mathématiques. J'aurais aimé un petit rappel des groupes utilisés par le modele standard à la fin (même si c'est évoqué un peu trop rapidement).
@MrActarus673 жыл бұрын
Pourriez-vous,pour l'agrément du plus grand nombre,insérer dans vos cours un enseignement portant sur le calcul différentiel et intégral universel;et plus en relation avec les trois dernières vidéos que vous aviez faites,indiquer de quels espaces,les octonions et sédénions sont les quotients ?
@rara43 жыл бұрын
Oh non j'ai loupé le live :( Hâte de rattraper cette séance, je comprends pas tout mais c'est passionnant
@antoinebrgt3 жыл бұрын
N'hésite pas à poser des questions ici si tu en as !
@romainmorleghem41323 жыл бұрын
Ce dernier épisode était ... exceptionnel (j'avoue c'était un peu facile)
@antoinebrgt3 жыл бұрын
Merci !! Content que ça t'ait plu !
@mahieddine52012 ай бұрын
Ce n'est pas que je n'aime pas cette chaîne ou la personne, mais je commence à en marre de KZbin qui me propose systématiquement ses vidéos en lecture automatique, alors que je ne les ai jamais regardées. Je peux être en train de regarder des vidéos sur les voitures ou d'autres sujets, et si je laisse la lecture automatique activée, la vidéo suivante vient toujours de cette chaîne. Ya moins de bloquer ou d'arrêter ça ?
@yoannmery2 жыл бұрын
Merci beaucoup pour cette série.
@francoismarchal64283 жыл бұрын
Tes exposés sont vraiment un régal de synthèse et de présentation, et permettent de bien appréhender cette liaison envoûtante et mystérieuse entre maths et physique. Que penses-tu par ailleurs du problème récent constaté sur le moment magnétique du muon ? Longue vie à ta chaine et vivement le prochain sujet !
@antoinebrgt Жыл бұрын
Merci pour le message ! Je me rends compte que je n'avais pas répondu, sans doute à cause de ma relative ignorance concernant le moment magnétique du muon :) Je ne peux pas trop me prononcer à ce sujet, je crois qu'il y a toujours quelques tensions, mais moins qu'il y a deux ans...
@jmichelcornu2 жыл бұрын
Merci pour cette excellente série. C'est la première fois que je vois la théorie de Lie expliquée de façon si claire. Une question : le groupe g2 est le seul qui n'apparaît pas dans le carré magique. Est-ce parce qu'il n'apparaît pas dans les matrices 3x3 ?
@antoinebrgt2 жыл бұрын
Merci beaucoup! Je n'ai pas de raison profonde pour laquelle G2 n'est pas dans le carré, ces objets exceptionnels sont vraiment mystérieux!
@stan-beats3 ай бұрын
je regarde ça pour dormir merci pour ta voix
@bullmarket34243 жыл бұрын
dans une matrice à coefficients complexes quelle est la norme du vecteur de la colonne j (a1j+ib1j) ... (anj+ibnj)? si la matrice est à coefficients réels c'est la racine carrée de a1j^2 +...+anj^2 quid quand c'est complexe merci
@marcbelloeil57403 жыл бұрын
Merci pour ces vidéos passionnantes ! Je les ai découvertes depuis peu et je me régale… As-tu l’intention de parler de l’algèbre non commutative d’Alain Connes ? Je trouve que son approche de la géométrie spectrale est très convaincante et je me demande comment s’interprète la classification des groupes de Lie sous cet angle. Je ne maîtrise pas le sujet mais je m’accroche à une représentation mentale peut-être erronée où à chaque point de l’espace correspondrait un automate doté de sa propre horloge: si un motif géométrique récurrent apparaît, cela signifie que les horloges des automates sont synchronisées auquel cas on peut leur associer un spectre. La métrique est directement liée au spectre et l’approche associe géométrie, temps et métrique.
@antoinebrgt3 жыл бұрын
Merci ! Je n’ai pas vraiment l’intention de parler de géométrie non comlutative pour le moment car j’ai plusieurs sujets plus élémentaires en tête, et Connes en parle déjà très bien, mais peut-être plus tard !
@SefJen3 жыл бұрын
4 heures c'est long, mais je n'ai pas vu le temps passer ! Comme d'hab j'ai des questions: 1) Une un peu hors sujet: quel est l'intérêt des produits hermitiens pour un C-ev ? Pourquoi ne pas considérer une forme bilinéaire, et pas sesquilinéaire ? 2) Concernant la pertinence ou non des algèbres exceptionnelles à décrire le monde physique, je n'ai pas été convaincu par tes arguments. Tu dis en effet que des aliens ayant les mêmes maths que nous ont les mêmes algèbres, mais ils sont dans le même univers que nous ! Quant à la question d'autres univers, c'est plus épineux. D'autres univers peut-être, mais avec les mêmes maths ? Après tout, qui dit que NOS maths soient les seules possibles ? Enfin, il est possible que les interactions fondamentales que nous connaissons soient des nécessités pour qu'un univers existe. Et ce dès qu'une conscience existe pour faire des maths. On n'est pas loin de ce qu'on appelle le principe anthropique. Mais je confesse ne pas en savoir plus sur la validité de ce "principe". 3) Je ne sais toujours pas d'où vient la nécessité de l'identité de Jacobi.
@clmasse3 жыл бұрын
Les commutateurs satisfont les identités de Jacobi, et pour les représentations dans K^n d'un groupe de Lie, la multiplication de la représentation de son l'algèbre de Lie est un commutateur. Donc pour le cas général il faut aussi que la multiplication d'une algèbre de Lie satisfasse les identités de Jacobi.
@antoinebrgt3 жыл бұрын
1) L'intérêt des produits hermitiens est qu'ils correspondent à une forme quadratique réelle : si du définis B(x,y) = xbarre * y alors B(x,x) est réel et peut être interprété comme une norme au carré. 2) C'est une question qui sort un peu du domaine de la science, et j'ai présenté ces "arguments" à la fin en forme de semi-blague. Mais je pense quand même que les maths sont universelles, donc le fait que 1+1=2, que 17 soit un nombre premier et que E8 soit le plus gros groupe exceptionnel sont des vérités qui sont selon moi valides indépendamment des lois physiques. Par exemple si le proton était instable, ces vérités tiendraient toujours, bien que personne ne soit présent pour les découvrir. 3) L'identité de Jacobi peut se voir de différentes façons, mais l'idée c'est vraiment que ça vient du groupe de Lie, et donc des axiomes du groupe. On a vu dans l'épisode II comment la loi de groupe se traduit sur l'algèbre par le crochet [x,y]. L'identité de Jacobi s'écrit alors ad([x,y]) = [ad(x) , ad(y)] avec ad(x) = [ x , . ]. Du coup elle exprime que la représentation adjointe de l'algèbre de Lie abstraite (c'est-à-dire l'espace tangent en l'identité du groupe de Lie) est bien une algèbre de Lie (où le crochet est le commutateur).
@antoinebrgt3 жыл бұрын
PS : merci pour ces questions et ton visionnage attentif !
@SefJen3 жыл бұрын
@@antoinebrgt Concernant l'universalité des maths, c'est pas 2*2=4 qui me gêne, c'est l'universalité des fondements, des règles de déduction, des axiomes de base, et du "bon sens", ainsi que des priorités. Je crois que c'est Gregory Chaitin qui met en doute dans un de ses livres la pertinence des nombres premiers comme notion fondamentale. De plus il y a plusieurs écoles, l'intuitionnisme. Sans compter la question de la cohérence des maths, encore ouvert. Mais je confesse que ce sont des questions un peu éloignées de la réalité du quotidien des mathématiciens. Ca n'empêche pas de faire des maths. Au passage, je remarque une coïncidence: 5 polyèdres réguliers, 5 algèbres exceptionnelles !
@antoinebrgt3 жыл бұрын
@@SefJen Oui j'essaye de me tenir éloigné de ce genre de débat philosophique (est-ce qu'on découvre ou invente les maths, ce genre de choses) car en général je trouve que ça n'apporte pas de nouvelle connaissance. Mon opinion personnelle est que les nombres premiers sont vraiment une notion fondamentale (toute civilisation faisant des maths seront amenés à les discuter), de même que les groupes de Lie exceptionnels, mais après je ne vais pas essayer de convaincre qui que ce soit ! Pour les polyèdres réguliers, il y a un lien direct avec E6, E7 et E8 en fait. E6 en donne un, et E7 et E8 en donnent deux chacun, ce qui fait 5 :)
@davidp.41762 жыл бұрын
Tout simplement super ! Merci Beaucoup
@antoinebrgt2 жыл бұрын
Merci beaucoup!
@marcpremium74422 жыл бұрын
C’était vraiment bien! Existe-t-il une classification équivalente pour les groupes discrets?
@antoinebrgt2 жыл бұрын
Oui il y a une classification analogue pour les groupes finis simples, mais c'est beaucoup plus compliqué à démontrer, en fait c'est l'un des théorèmes les plus gros de toutes les maths, une preuve complète tient sur des centaines où milliers de pages!
@leporcquirit3 жыл бұрын
Coquille de calcul et de fin d'explication vers 3:00:05 (mais super prestation dans l'ensemble bien sûr !)
@flo08102 жыл бұрын
Excellente vidéo , tu pourras peut-être, faire une application en physique dans une prochaine vidéo !
@antoinebrgt2 жыл бұрын
Oui, un jour je parlerai du modèle standard et des théories de grande unification, où tout ceci est central !
@ouinamp39303 жыл бұрын
Juste une petite remarque sur la forme : les textes en rouge foncé sur fond noir ressortent mal. Pas top pour les théorèmes importants. Tu pourrais utiliser une couleur plus claire stp ?
@antoinebrgt3 жыл бұрын
oui je m'en suis rendu compte après coup, je penserai à utiliser un rouge clair à l'avenir !
@ouinamp39303 жыл бұрын
@@antoinebrgt merci ! 😀
@alvarodemontes38183 жыл бұрын
Bonjour, Je patauge dans la physique basée sur géométrie non commutative d'Alain Connes. Pourriez-vous svp en faire un introduction pour les physiciens et non les mathématiciens ? PS: bravo pour toutes vos vidéos. J'adore.
@antoinebrgt3 жыл бұрын
C'est pas prévu pour tout de suite, je voudrais faire quelques sujets un peu plus basiques avant, mais pourquoi pas plus tard !
@iPat693 жыл бұрын
Bonjour et bravo pour cette série. Il faudrait que j'al courage de revoir les 3 épisodes. Une question sur la fin l'épisode III (partie sur E8) : Comment sont définis les Li ? Comment montre t on que le diagramme correspondant est admissible ?
@antoinebrgt3 жыл бұрын
Merci ! Je crois que j'ai donné les définitions explicites des Li en fonction d'une base orthonormale, donc ce sont vraiment juste des vecteurs en dimension 8 définis par leurs coordonnées de façon habituelle. Ensuite pour montrer que ce diagramme est admissible il suffit de vérifier que ces vecteurs satisfont à toutes les conditions demandées !
@iPat693 жыл бұрын
@@antoinebrgt Bonjour, J'ai vu (Li) est une B.O.N et les vecteurs associés au diagramme sont de la forme L(i+1)-Li. Pour la norme 1, je comprends (modulo racine de 2) mais pour les angles j'ai du mal. Si on fait par exemple le produit scalaire (L3-L2).(L4-L3) on trouve -1 et pas le cos de 2Pi/3. Qu'est-ce que je n'ai pas compris dans l'histoire ?
@antoinebrgt3 жыл бұрын
@@iPat69 Calculons l'angle entre L3-L2 et L4-L3. Le cosinus de cet angle vaut (L3-L2).(L4-L3) / ( ||L3-L2|| ||L4 - L3||) = -1/2 donc l'angle vaut bien 2pi/3.
@iPat693 жыл бұрын
@@antoinebrgtAh Oui la norme des L(i+1)-L(i) n'est pas 1. Mais ça marche qd même car ils ont tous la même norme. Donc en divisant tous les vecteurs par Racine(2) on a le système qui répond aux conditions cherchées
@antoinebrgt3 жыл бұрын
@@iPat69 Oui, on n'exige pas que la norme des vecteurs soit 1 dans un système de racines (cf la définition donnée vers 1:48:00).
@clauwzsayn41423 жыл бұрын
Salut j’aimerais savoir vous avez fait quoi comme étude (prepa etc...)
@antoinebrgt3 жыл бұрын
J'ai fait prépa, école d'ingé puis master et thèse en physique théorique (je crois que j'en dis plus sur la vidéo où je donne mon point de vue sur la physique théorique).
@leporcquirit3 жыл бұрын
CV complet sur son site perso
@yanikemmanuel80174 ай бұрын
Merci 🪶
@josephmathmusic2 жыл бұрын
Y a-t-il un lien entre groupes de Lie et le reseau de Leech sur R^24?
@antoinebrgt2 жыл бұрын
Oui il y a des liens, pas forcément très directs (le réseau de Leech n'a pas de racine, c'est ce qui le distingue !), je pense que je parlerai de Leech un jour !
@josephmathmusic2 жыл бұрын
J'ai essayé de l'illustrer à un moment mais ca donne surtout plein de points partout (plus de 196000 voisins de l'origine) et on ne voit pas tellement grand chose. E tout cas ces objets sont vraiment fascinants! Quelques illustraiont d'objets multidim que j'ai faites: kzbin.info/www/bejne/Y5vXdoaMrbVogsU kzbin.info/www/bejne/iZvFZH2nZ76qeMU
@antoinebrgt2 жыл бұрын
@@josephmathmusic oui, le nombre exact de voisins est un nombre très important par ailleurs, lié au Moonshine !
@daniellippert93683 жыл бұрын
J'aimerais vivement que tu fasses un sujet sur l'article récent de Juan Maldacena et Alexey Milekhine: Humanly traversable wormhole.
@antoinebrgt3 жыл бұрын
Ce n'est pas forcément ce que je maîtrise le mieux, mais je note l'idée !
@josephmathmusic2 жыл бұрын
Les simples, doubles et triples lignes me rappellent les liaisons chimiques :)
@antoinebrgt2 жыл бұрын
Oui on peut vraiment voir ça comme des sortes de molécules, avec des su(2) pour atomes!
@josephmathmusic2 жыл бұрын
Je ne savais pas, je croyais que c'etait juste une vague impression visuelle :) En tout cas, je trouve vos présentations remarquablement claires!
@antoinebrgt2 жыл бұрын
@@josephmathmusic Merci ! Évidemment il ne faut pas prendre cette analogie chimique trop au sérieux hein !
@fabienpoirson98555 ай бұрын
Je me suis endormi avec une vidéo Star Wars et je rêvais… Au bout d’un moment je rêvais de ce que j’entendais et c’était cette vidéo, je comprenais plus rien à la Force 😂 J’adore tes vidéos continue
@nathanmcwoodbrook63403 ай бұрын
Des formes que j'ai dessiner il y a bien longtemps
@christophem63733 жыл бұрын
Le dernier numéro du magazine "La Recherche" a un article sur le E8. Coïncidence, je ne crois pas ....
@antoinebrgt3 жыл бұрын
Oh et il parle de quoi ?
@christophem63733 жыл бұрын
un petit encadré sur la construction du réseau E8 la comparaison E8 et réseau de Leech des formes modulaires et des fonctions "magiques"
@christophem63733 жыл бұрын
l'article ne fait que 6 pages
@antoinebrgt3 жыл бұрын
@@christophem6373 ok, j’imagine qu’ils parlent d’empilements de sphères!
@Demutemoivitesalechien2 ай бұрын
Je me reveille je tombe sur ça
@curiositespatiale6328Ай бұрын
Ca me satellise
@flo08102 жыл бұрын
J'ai compris le début de la vidéo jusqu'à 1h
@kamelk76733 ай бұрын
Merci 🎉❤😂
@bullmarket34243 жыл бұрын
fini les leçons de mathématiques et de physique? dommage
@antoinebrgt3 жыл бұрын
Non c'est pas fini, je vais en refaire ce mois-ci, j'étais occupé par un déménagement international tout l'été :)
@bullmarket34243 жыл бұрын
@@antoinebrgt tu es où maintenant?
@antoinebrgt3 жыл бұрын
@@bullmarket3424 Je suis à Paris / Saclay
@alvarodemontes38183 жыл бұрын
@@antoinebrgt welcome back 😃
@yarisaliciafleriscarortiza37188 ай бұрын
Je me jsui endormi et je me suis réveillé la 😭😭
@on-kb2ev5 ай бұрын
😭😭😭😭mais plusieurs fois moi aussi
@CocopencoАй бұрын
En tant qu’OTP Velkoz je ne peux qu’apprécier cette suggestion videoludique
@josephmathmusic2 жыл бұрын
A_4 = E_4, D_5 = E_5
@antoinebrgt2 жыл бұрын
Oui tout à fait, on peut même continuer!
@Karlito-mgl2 ай бұрын
ptn mais quesque je regarde la
@WERRdaalik2 ай бұрын
Prof Abdel 1
@BNS714 ай бұрын
N'importe quoi.. tu n'y connait rien mec.
@antoinebrgt4 ай бұрын
@@BNS71 peux-tu être plus spécifique ?
@WERRdaalik2 ай бұрын
prof Abdel 1
@clmasse3 жыл бұрын
Ben non c'est le contraire. Les groupes exceptionnels ont trop peu de propriétés pour qu'ils apparaissent dans une théorie avec une probabilité appréciable. Je dis bien une théorie, et pas "les lois de la Nature." C'est pour ça qu'on utilise beaucoup les complexes en physique, ce sont les nombres qui ont le plus de propriétés sympa.
@antoinebrgt3 жыл бұрын
Oui mais il y a une distinction à faire entre les systèmes de nombres (les octonions ont "moins de propriétés sympas" que les complexes) et les groupes associés (les groupes exceptionnels n'ont pas moins de propriétés que les groupes unitaires). Mais de toute façon ces discussions ne sont pas vraiment dans le cadre des maths ou de la physique.
@clmasse3 жыл бұрын
@@antoinebrgt Bien sûr ce sont des groupes, donc avec toutes les propriétés des groupes. Mais tout le reste, pas exemple les sous-groupes, sont des propriétés exceptionnelles donc rares. Il y a peut-être des systèmes complexes, comme des matériaux, pour lesquels les groupes exceptionnels sont utiles à la description. Mais pour la physique fondamentale, c'est-à-dire dans le paradigme actuel essentiellement les vertex, probablement pas.
@antoinebrgt3 жыл бұрын
@@clmasse Je ne comprends pas trop en quoi les sous-groupes ont des propriétés exceptionnelles : tout l'intérêt est justement que les groupes exceptionnels de type E contiennent SU(3)*SU(2)*U(1) comme sous-groupes !
@clmasse3 жыл бұрын
@@antoinebrgt SU(666) le contient aussi comme sous groupe, les groupes SU sont largement plus nombreux, donc il y a plus de chance que ce soit un de ceux-là. Ça peut aussi être un groupe SO ou Sp. Il y a aussi tous les produits de ces groupes, dont le fameux SU(3)xSU(2)xU(1), et c'est encore celui qui marche le mieux.
@antoinebrgt3 жыл бұрын
@@clmasse Oui mais du coup si c'est SU(666) ça semble vraiment aléatoire ! Mais bon comme je l'ai dit tout ça ce n'est pas de la physique de toute façon.
@flo08102 жыл бұрын
Car c'était de mon niveau c'est à dire maximum lycée voire L1