derivative of tetration of x (hyperpower)

  Рет қаралды 526,867

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 887
@blackpenredpen
@blackpenredpen Жыл бұрын
Solve x^x^x=2? Check out here: kzbin.info/www/bejne/m5eQhYaKnJJlqas
@MrAleksander59
@MrAleksander59 Жыл бұрын
What if d(3↑↑X)/dx?
@scarletevans4474
@scarletevans4474 Жыл бұрын
Professor: "On exam, I will test whether you know mathematical induction" Exam: "Find derivative of n-th tetration of x." 🤣🤣
@RSpaco
@RSpaco Жыл бұрын
sqrt(2)
@snekback.
@snekback. Жыл бұрын
@@MrAleksander59 The notation would be hard enough already
@MrAleksander59
@MrAleksander59 Жыл бұрын
@@snekback. Yes, but I learned it years ago and well understood. I tried to do something interesting with it so I researched hyper roots and logs, tried to differentiate it. When this video came out I thought: what if the topic will be researched more?
@Lagiacrusguy1
@Lagiacrusguy1 5 жыл бұрын
“i don’t know how to integrate this so don’t ask me” we found his kryptonite
@ivanrubiomorales2759
@ivanrubiomorales2759 3 жыл бұрын
Lmaooo
@incription
@incription 3 жыл бұрын
no one even knows what x^^0.5 is iirc, but derivitive of x^^n is.. well.. math.stackexchange.com/questions/617009/finding-the-derivative-of-x-uparrow-uparrow-n
@WingedShell82
@WingedShell82 3 жыл бұрын
@@incription scary
@darbyl3872
@darbyl3872 3 жыл бұрын
Wha...? Well now, I don't feel so dumb.
@victory6468
@victory6468 Жыл бұрын
it would just be x^(x^(x))+1)/x^x +1) +c
@sreekommalapati2032
@sreekommalapati2032 6 жыл бұрын
"Im just gonna put this in the thumbnail to make a little clickbait" Transparency
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Sree Kommalapati lolllll and then i changed
@coldlogiccrusader365
@coldlogiccrusader365 5 жыл бұрын
IU am 66 yrs old. I earned a MS in Mathematical Physics in 1977. I never heard about Tetration till just now THANK YOU so much!!!!!!!!!!!!!!!!!!!!!!!!!
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Thank you!!
@19midnightsun87
@19midnightsun87 5 жыл бұрын
Hm, seems like the education back then was pretty shitty if you didn't hear about that. Where did you earn your degree?
@samharper5881
@samharper5881 5 жыл бұрын
@@19midnightsun87 Grow up.
@aelfward
@aelfward 5 жыл бұрын
19midnightsun87 since titration wasn’t coined until the 1980s it would make sense that Cold Logic Crusader would not know it. Heck, no computer of that day could even try to perform the operation.
@19midnightsun87
@19midnightsun87 5 жыл бұрын
Ah, I see! Very interesting. Thank you for the info.
@chengzhou8711
@chengzhou8711 6 жыл бұрын
Now integrate it
@robert33232
@robert33232 6 жыл бұрын
No, it's hard!
@beevees1636
@beevees1636 5 жыл бұрын
😂😂😂😂😂
@andrewolesen8773
@andrewolesen8773 5 жыл бұрын
X^x^x + c
@justabunga1
@justabunga1 5 жыл бұрын
If you integrate x^(x^x) (i.e. 3rd tetration of x), then there’s no answer since it’s non-elementary. If you integrate x^3, it would be x^4/4+C.
@Dish.Washer
@Dish.Washer 5 жыл бұрын
@@justabunga1 What does elementary mean?
@helio3928
@helio3928 6 жыл бұрын
X: This isn't even my final form!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Is this a reference to Dragon Ball? Cell's final form or something.
@buttsez4419
@buttsez4419 5 жыл бұрын
@@blackpenredpen shaggy
@safwanshahriar4108
@safwanshahriar4108 3 жыл бұрын
@@blackpenredpen Freeza
@Sid-ix5qr
@Sid-ix5qr 5 жыл бұрын
If you'd put d/dx (x³) for my final exam, you'd be my favourite teacher!
@1001-t4z
@1001-t4z 5 жыл бұрын
If that appears in your final exam i assume you dont need a teacher
@suyunbek1399
@suyunbek1399 Жыл бұрын
at least solve it by base principles
@abhirupkundu2778
@abhirupkundu2778 Жыл бұрын
Let me give you one@@1001-t4z
@jasonzacharias2150
@jasonzacharias2150 Жыл бұрын
get vaxxed! You need at least 3 or you won't pass the test
@Septicemic-Fugue
@Septicemic-Fugue Жыл бұрын
​@suyunbek1399 no sir. I will never remember the limits definition of derivatives. Power rule all the way!
@TurdFurgeson571
@TurdFurgeson571 5 жыл бұрын
Tetration, not to be confused with titration. I wonder how many chemistry students came here looking for curves and then subsequently ran away because of some light mathing. Love the video. Clear and concise. It's clear that your professor chops are strong.
@amineaboutalib
@amineaboutalib 2 жыл бұрын
none what so ever
@TurdFurgeson571
@TurdFurgeson571 2 жыл бұрын
@@amineaboutalib Prove it
@martxyz3363
@martxyz3363 Жыл бұрын
@@amineaboutalib *whatsoever
@bottomtext251
@bottomtext251 Жыл бұрын
Im a chemist and I came for the math :)
@Bhuvan_MS
@Bhuvan_MS Жыл бұрын
Lmao 🤣
@tbonbt8271
@tbonbt8271 6 жыл бұрын
For those who'd like to do more research on ⁿa, the notation is called tetration.
@dystotera77
@dystotera77 6 жыл бұрын
Also x↑↑↑y = x↑³y is called pentation and other notation to represent it is x [5] y x↑ⁿ⁻² y = x [n] y, where n is the number of operation (ex: sum n=1, multiplication n=2, potentiation n=3, tetration n=4, etc).
@EduardoHerrera-fr6bd
@EduardoHerrera-fr6bd 6 жыл бұрын
Thanks! I didn't know nothing about this.
@Sky11631
@Sky11631 6 жыл бұрын
Hows the thing called you need for g_64?
@mathewmcleod9958
@mathewmcleod9958 6 жыл бұрын
ahh interesting, thanks :-)
@Sky11631
@Sky11631 6 жыл бұрын
@Connor Gaughan if thats actually the case.. how boring
@MegaPhester
@MegaPhester 6 жыл бұрын
I found a nice recursive formula for the derivative of x↑↑n by setting y = x↑↑n, taking the log on both sides and doing implicit differentiation: d(x↑↑n) = x↑↑n * ( d(x↑↑(n-1)) * log(x) + x↑↑(n-1) / x )
@hugoburton5222
@hugoburton5222 4 жыл бұрын
I'm not sure this is that clean and nice.
@1224chrisng
@1224chrisng 3 жыл бұрын
@@hugoburton5222 well it's recursive, so it probably can't get cleaner than this
@DJCray8472
@DJCray8472 3 жыл бұрын
I think it is simpler ;-) -> d(x↑↑n) = x↑↑n * d(x↑↑[n-1] * ln[x])
@DJCray8472
@DJCray8472 3 жыл бұрын
@ you mean n -> to |R? the question would be, what it would mean......
@spiderwings1421
@spiderwings1421 2 жыл бұрын
Now do d/dx(x↑↑x)
@46pi26
@46pi26 6 жыл бұрын
Good use of the Chen Lu; 70/10
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Yay!!!
@heliocentric1756
@heliocentric1756 6 жыл бұрын
"Chen Lu" The Goddess of Derivatives
@DiegoMathemagician
@DiegoMathemagician 6 жыл бұрын
Chain rule haha i died
@Reydriel
@Reydriel 6 жыл бұрын
Lmao
@sadhlife
@sadhlife 6 жыл бұрын
LMAO
@Mhammerable
@Mhammerable 5 жыл бұрын
Lol I always thought it was "chair rule" because that's how my professor pronounced it. Awesome teacher tho
@voidmain7954
@voidmain7954 4 жыл бұрын
just wait till you see the "prada lu" the mightiest of all!
@suleem9950
@suleem9950 5 жыл бұрын
You taught me so many things like double factorials, hyperpowers... I never thought such things exist. Well done!
@silasrodrigues1446
@silasrodrigues1446 6 жыл бұрын
I have never seen this notation before!
@berenjervin
@berenjervin 6 жыл бұрын
You might find this interesting. (Watch 175 and 176). It starts off a little "hokey", but does get pretty interesting (and introduces that notation)
@kevinm1317
@kevinm1317 6 жыл бұрын
Silas Rodrigues Its very uncommon. Only really used to describe for extremely large numbers, like Graham's numbee
@berenjervin
@berenjervin 6 жыл бұрын
Doh, I didnt include a link! Here they are. 175- kzbin.info/www/bejne/e4bZd4uaZt5kftE 176- kzbin.info/www/bejne/kGmsZ2t7bN6Nm7s Sorry about that.
@ytsas45488
@ytsas45488 6 жыл бұрын
By that you mean "I have never seen Numberphile before"?
@EduardoHerrera-fr6bd
@EduardoHerrera-fr6bd 6 жыл бұрын
Me too! Today I learned a brand new thing! >:3
@zeldasama
@zeldasama 6 жыл бұрын
My mans ADMITTED he was gonna put tetration of x in video for a clickbait. HahAHA
@valeriebarker2594
@valeriebarker2594 3 жыл бұрын
For any function f(x)^g(x), the derivative can be found by adding the power rule to the exponent rule. That is to say d/dx (f(x)^g(x)) = f’(x)*g(x)*f(x)^(g(x)-1)+g’(x)*ln(f(x))*f(x)^g(x)
@ericmckenny6748
@ericmckenny6748 3 жыл бұрын
This is a great simplifying formula to show properties in elements in hypercubes :)
@gregsouza7564
@gregsouza7564 2 жыл бұрын
This is stolen. You clearly don't know how this is derived. You don't just magically add the formulas together and get this.
@valbarker610
@valbarker610 2 жыл бұрын
@@gregsouza7564 I actually proved this in my math class lol it’s not that difficult to derivate f(x)^g(x) and determine this result. In fact if you note that in cases c^a and a^c the constant parts have their half of the equation canceled out due to having a derivative of 0. Therefore the power rule and the exponent rule are both just simplified versions of this general rule
@lumina_
@lumina_ Жыл бұрын
​@@gregsouza7564 lmao whatt? What do you mean "this is stolen". goofy
@maxe624
@maxe624 Жыл бұрын
If you dont derive all math yourself you basically stole it
@gamingletsplays2518
@gamingletsplays2518 5 жыл бұрын
It's so amazing to see a (mostly) friendly community of people who like math as much as me (:
@andrewcorrie8936
@andrewcorrie8936 6 жыл бұрын
Love your videos: I haven't studied Maths for a long time, and neither do I teach it, but these make difficult problems so easy to follow.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
: ))))
@kruksog
@kruksog 6 жыл бұрын
Hey BPRP. I'm about to graduate with a math degree. I want to tell you, your vids are awesome and I love your pronunciation. Thanks for what you do! You bring me snippets of math I can enjoy when I feel bogged down in technical math i have to learn for a grade (which I'm sure you know can suck the fun out of it). So thanks. Truly.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Thank you!! I am glad to hear this!! Best of luck to you in everything you do.
@intergalakti176
@intergalakti176 5 жыл бұрын
Hi, I really like your videos and since you used tetration in this one, I would like to ask you a question that's been on my mind for quite some time now, but for which I could not find a solution yet. What I realized was the following: If you try to complete the natural numbers with respect to subtraction, which is the inverse operation to multiplication, you get the integers. If you complete these with respect to quotients, which are inverse to multiplication, i.e. form the quotient field, you obtain the rational numbers. By completing these wrt. roots of polynomials, i.e. wrt. exponentiation, you obtain the algebraic numbers. But what if you complete these using tetration, i.e. add superroots, superlogs and other solutions of "tetration equations"? E.g. the superroot of 2, i.e. the number x with x^x=2, seems to not be algebraic, so can you form a field extending the rational numbers that is closed wrt. these operations? It can't be a field extension of finite dimension since it is not algebraic, and it also has to be a field, I think, and it should still be countable so it isn't the real numbers, but I could not figure out much more. Also, if you continue this process with pentation and higher order operations (see Knuth's up-arrow notation), you should get other fields extending each other. Since they are a mapping family, you can take the direct limit of those, and get a very big field - are these the whole real numbers? A lot of questions, I know, but I hope someone else already thought about it and figured it out, since it is far beyond my current scope. Anyway, I would be happy about any kind of help.
@brodiebie
@brodiebie 2 жыл бұрын
have you got an answer to this yet?? sounds insane i wanna know
@SHPfz
@SHPfz 2 жыл бұрын
They should be included in the real numbers, moreover if we keep going towards the higher orders, we could find the transcendental constants (Like π, e) midway through. Or, we might even try to approach infinitation (as in, the infinth order, writing with infinitely many up arrows) and 1) find certain numbers which can't be written without the inverse infinth order. Or, 2) already cover up every real number, thus having no real numbers left, furthermore having found a way to cover up the first uncountable infinity. Or, 3) just get to the transcendental numbers with a clear definition about them.
@chess-blundermctrashplay762
@chess-blundermctrashplay762 Жыл бұрын
New math lore
@isaquepim4555
@isaquepim4555 6 жыл бұрын
I love learning new notations! #YAY
@fmakofmako
@fmakofmako 6 жыл бұрын
I didn't read through the comments so if someone has already posted the derivative then kudos to them. The form of the derivative of x^^n for n >=4 is: x^^n*x^^n-1*(1/x+x^^n-2*(lnx/x+x^^n-3*(ln^2x/x+x^^n-4*(ln^3x/x+...+x^^2*(ln^(n-3)x/x+ln^(n-2)x+ln^(n-1)x)...) You can prove this by induction. The inductive step is shown by the recursion derivative of x^^n = x^^n*(x^^n-1/x+lnx*d/dx(x^^n-1)) and the base case is that the derivative of x^^4 is x^^4*x^^3*(1/x+x^^2*(lnx/x+ln^2x+ln^3x)). I put the base case in the same form as my answer to show that it's true because yt comments are hard to format and anyways loads of people in the comments did the x^^4 case. Moving on to the induction we have d/dx(x^^n+1)=x^^n+1*x^^n*(1/x+lnx/x^^n*d/dx(x^^n)) from the recursion. Then we plug in the same form from above. d/dx(x^^n)=x^^n*x^^n-1*(1/x+x^^n-2*(lnx/x+x^^n-3*(ln^2x/x+x^^n-4*(ln^3x/x+...+x^^2*(ln^(n-3)x/x+ln^(n-2)x+ln^(n-1)x)...) Therefore: d/dx(x^^n+1)=x^^n+1*x^^n*(1/x+x^^n-1*(lnx/x+x^^n-2*(ln^2x/x+x^^n-3*(ln^3x/x+x^^n-4*(ln^4x/x+...+x^^2*(ln^(n-2)x/x+ln^(n-1)x+ln^(n)x)...)) Done.
@iiiiii-w8h
@iiiiii-w8h 4 жыл бұрын
Recursion? nah. Hold my beer: \frac{d}{dx}{^{n}x} = \frac{1}{x}\sum_{k=1}^n\left ( \ln^{k-1}(x) \prod_{i=0}^k {^{n-i}x} ight )
@flamingpaper7751
@flamingpaper7751 6 жыл бұрын
What is i^^i?
@DariusMo
@DariusMo 6 жыл бұрын
Flamingpaper e^(-pi/2)
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 6 жыл бұрын
bl00dwork No, this would be for i^i...
@DariusMo
@DariusMo 6 жыл бұрын
novidsonmychannel justcommenting but I thought that ¡^^¡ would be ¡^¡ since i^^^i would be i^i^i
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 6 жыл бұрын
bl00dwork OK, I read the "^^" as the notation for what bprp introduced in this video, so e.g. x^x^x would be x^^3. But I have no idea myself about what i^^i could mean... I'm not sure if it even makes sense anyway...
@philosophersm9005
@philosophersm9005 6 жыл бұрын
By replacing those "i"es with e^(i*pi/2), i^i^i would be e^((i*pi/2)*e^(i*pi/2)^i) :( and simplifing this we get e^(i*pi/2 * e^(-pi/2)):-| is's still a mess but that's it. if you want to expand it with Euler's formula again, it would be much more "complex":-)
@novidsonmychanneljustcomme5753
@novidsonmychanneljustcomme5753 6 жыл бұрын
In the ending result you also could simplify: x^(x^x)*x^x = x^(x^x+x), but this depends on which notation you prefer. ;-)
@DonSolaris
@DonSolaris 6 жыл бұрын
Your ball is getting smaller and smaller. 😁😁😁
@mannyheffley9551
@mannyheffley9551 4 жыл бұрын
@Venky Wank good one XD
@Hello-pf7se
@Hello-pf7se 4 жыл бұрын
Which one of the ~two~...three...?
@vortexgvn4731
@vortexgvn4731 4 жыл бұрын
balls
@trustnobody90
@trustnobody90 4 жыл бұрын
by ball u mean mic or real balls
@jjmmm515
@jjmmm515 4 жыл бұрын
@@trustnobody90....the mic
@jamez6398
@jamez6398 6 жыл бұрын
For pentation, you have to use the up arrows, presumably because you run out of upper corners to write in after tetration due to the number of upper corners being 2...
@timmurski2075
@timmurski2075 5 жыл бұрын
I'm so pleased I can follow these. You are so fun to watch. Thank you for sharing the awesome math
@ethanzhu8478
@ethanzhu8478 6 жыл бұрын
So I was just learning multivariable calculus and I realized how much simpler this is if you just use the multi variable chain rule on f(x, x^x) where f(y,z)=y^z
@thompoz7114
@thompoz7114 6 жыл бұрын
Tetration is read as "the nth tetration of a" x^^3, x^x^x, "the third tetration of x"
@МаксимЯромич
@МаксимЯромич Жыл бұрын
or 'x tetrated to 3'?
@chilli881
@chilli881 Жыл бұрын
the 10 mins I spent here was worthier than my existence
@shinigamisteve5607
@shinigamisteve5607 5 жыл бұрын
Well, I’m glad he at least admits that he makes clickbait thumbnails. Didn’t know about that notation, but already knew about tetration. Great vid
@ahmadnasser9435
@ahmadnasser9435 2 жыл бұрын
i can't believe that my friend who have never seen tetration or heard about thought of this concept and wrote it in the same annotation of this and chose to call it superpostion .then he sarted studyng it as a functon and he got some pretty cool stuff .bt he was stuck on a problem.while searching the net for a solution he fond the same concept in the name of tetration and it shook us how similar his invention is to it .
@vedantneema
@vedantneema 6 жыл бұрын
So, this notation that blackpenredpen just told, I had actually once accidently discovered it myself. So, when I did a bit of research on values of x^^a for fractional values of 'a' and found out an elegant relation between x^^(1/2) and Lambert - W function. It is: x^^(1/2)=e^(W(x)) or W(x)=ln(x^^(1/2)). I am also working on the derivative of x^^a, which is partially answered by Calyo Delphi in one another comment. I did some research and thought I should share it here.
@fantiscious
@fantiscious 2 жыл бұрын
3 years late but I think you might be wrong because e^^x is (as far as I know) an injective function, so if e^^a = e^^b then a = b. But e^^1 by definition equals e, and if you plug in e into your formula {x^^(1/2)=e^(W(x)}, you get e^^(1/2) = e^W(e), which is still e. This however contradicts e^^x being an injective function, since 1/2 ≠ 1, therefore the formula is incorrect
@vedantneema
@vedantneema 2 жыл бұрын
@@fantiscious yup you're right. i prob miscalculated then or sth. the actual relation was (e^x)^^1/2 = e^W(x) Proof: x = t^t => t = x^^1/2 -- 1. x = te^t => t = W(x) -- 2. => e^(x) = e^(te^t) => e^x = (e^t)^(e^t) => e^t = (e^x)^^1/2 = e^(W(x)) (from 1.) => (e^x)^^1/2 = e^W(x)
@fantiscious
@fantiscious 2 жыл бұрын
@@vedantneema Wow thanks for replying early lol. However could there be a misconception from your first line of proof? You see, log_x(x^^n) = x^^(n-1) => log_x(x^^1) = x^^0 x^^1 = x ∀ x (by definition) => log_x(x^^1) = log_x(x) = 1 = x^^0 ∴ x^^0 = 1 ∀ x But in your 1st line of proof, you imply that x = t^^n => t = x^^(1/n) for all n. This says that 2 = t^^n => t = 2^^(1/n). However as n approaches to infinity, t = 2^^(1/n) approaches 2^^0, which from the lemma above shows it approaches 1. This cannot be true though since; 2 = lim_(n -->∞)(t^^n) => 2 = t^t^t^t^... => 2 = t^2 (since t^t^t^... appears in itself) => t = √2 This shows that t = √2 and t = 1, but √2 ≠ 1, making a contradiction
@vedantneema
@vedantneema 2 жыл бұрын
@@fantiscious "x = t^^n => t = x^^(1/n) for all n". No, I only meant it for when n = 2. Also in your last statement you conclude that t can have two solutions for the given equation, one each is obvious in two different but equivalent forms. That stems from the fact that unlike addition, multiplication or exponentiation; tetration is not monotonic. Refer to the graph of x^x within [0, 2](decreasing in [0, 1] and increasing within [1,2]). The graph of y^y=x (== y = x^^1/2) is equally weird. Now the limits within which x^^n is monotonic is something that may be interesting to work out. I speculate it remains the same for n>=1. I'll report back if I find something.
@ryansamarakoon8268
@ryansamarakoon8268 5 жыл бұрын
I think you can also do it with implicit differentiation where you take the natural log on both sides. You'll need to repeat for x^^3 so for x^^2 you'll have: x^^2=y XLn(X)=ln(y) Ln(X)+1=Dy/DX •1/y Therefore Dy/DX=x^^2(ln(X)+1)
@DrunkenHotei
@DrunkenHotei Жыл бұрын
I think you forgot to divide by x in the second term on the left-hand side of line 3, but yeah I used implicit differentiation and got the right answer, too(as I tend to do first when I don't know how to take a derivative in general) Edit: I don't know why I thought you made a mistake in line 3, but it all looks fine upon rereading it.
@nathansauveur6704
@nathansauveur6704 6 жыл бұрын
Do a vid about integrating e^((x^x)*ln(x)) next please
@dolevgo8535
@dolevgo8535 6 жыл бұрын
you can't integrate x^x, so pretty sure you cant integrate x^(x^x)(which is what you asked here)
@nathansauveur6704
@nathansauveur6704 6 жыл бұрын
dolev goaz That's no fun.
@Apollorion
@Apollorion 6 жыл бұрын
@dolev goaz: Since we're talking mathematics here, I sincerely wonder: *"do you have proof for your two claims?"* (The claims I mean: 1: "you can't integrate x^x" and 2: "so you can't integrate x^(x^x)" ) For x>0 both functions (i.e. exp(ln(x)*exp(ln(x))) and exp(ln(x)*exp(ln(x)*exp(ln(x)))) ) are continuous and differentiable, so why wouldn't you be able to integrate them?
@wayoftheqway9739
@wayoftheqway9739 6 жыл бұрын
More precisely, their indefinite integrals aren't expressible in terms of elementary functions.
@azice6034
@azice6034 6 жыл бұрын
YES! He can't tease us like that!!
@robfrohwein2986
@robfrohwein2986 Жыл бұрын
Very clear explanation... every time i learn something 😀
@blackpenredpen
@blackpenredpen Жыл бұрын
Glad to hear that!
@blackpenredpen
@blackpenredpen Жыл бұрын
Thanks!
@MrMatthewliver
@MrMatthewliver 4 жыл бұрын
I found a quite complicated formula for general integration of tetration functions in wikipedia, here: en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions It is given as exactly 20th example from the top; the formula involves incomplete gamma function and some parameters (n, m, i, j), but it's still not quite clear to me. I have just subscribed your channel :-) Could you devote some time to this formula in one of your future lectures? I mean, how it has been found and how it can be used In practice? Anything that can make it more familiar and clear?
@nishilsheth9076
@nishilsheth9076 Жыл бұрын
It's cool and all, but the page contains integrals. Can you find one which lists the formula for derivatives?
@MrMatthewliver
@MrMatthewliver Жыл бұрын
@@nishilsheth9076 You know, derivatives can be calculated using quite simple set of a few rules. They include: a formula for derivative of the product (1), derivative of the quotient (2), derivative of a composite function (3), derivative of a power (4), and derivative of an inverse function (5). So here you are: (1) [f(x)*g(x)]' = f'(x)*g(x) + g'(x)*f(x), or - more simply, (fg)' = f'g + g'f (2) [f(x)/g(x)]' = [f'(x)*g(x) - g'(x)*f(x)] / [g(x)]^2, more simply (f/g)' = (f'g - g'f)/g^2 (3) when u(x) = f(g(x)), u'(x) = g'(x) * f'(u), for example [ln(sinx)]' = (1/sinx)*(-cosx) etc. (4) [f(x)^g(x)]' = [f(x)^g(x)] * {[g'(x) * ln f(x)] + [g(x)/f(x) * f'(x)]}, or more simply: (f^g)' = (f^g) * (g'* lnf + g*f'/f ) - which is an applied formula for derivative of a composite function after making an identity transformation: f^g = e^(g*lnf) (5) when y=f(x) and x=g(y), g'(y)=1/f'(x). For example when x=y^y and y=ssrt(x), (y^y)* (1+lny) = 1/[ssrt(x)]', which yields [ssrt(x)]' = 1/[y^y * (1+ lny)], so: when f(x) = ssrt(x), f'(x) = 1/ [x + ln(ssrt(x)], since when y= ssrt(x), y^y = x by definition When using these five formulas, we can determine a derivative of any function expressed with a finite formula.
@Xav87ier
@Xav87ier 6 жыл бұрын
Very interesting. I have following question: how can I calculate the first derivative of the function "a tetrated x" (a is positive)?
@DoctorT144
@DoctorT144 5 жыл бұрын
We still have no clear way of defining how to even calculate non-integer raised tetration, so good luck with that! I mean what would 2^^1.5 even mean?! I've looked into this quite a bit and there seems to be no conclusive answer.
@ryanman0083
@ryanman0083 Жыл бұрын
@@DoctorT144 Using super Logarithm (inverse of Tetration) By definition sLog2 (2^^3) = 3 NOTE: "sLog" is a notation for super Logarithm. Like how Logarithm cancels the base leaving the exponent ex. Log2 (2^3) = 3 super Logarithm does the same with Tetration leaving the super power. We can use super Logarithm to solve non integer super powers since super Logarithm is repeated Logarithm by definition. Let's let sLog2 (16) = 3+x Where 0 ≤ x < 1 (represents a 0 or decimal) sLog2 (2^^3) = sLog2 (2^2^2) => Log2(2^2^2) = 2^2 => Log2(2^2) = 2 =>Log2(2) = 1 At this point we've taken three logs representing our integer part of the solution (given by the fact that the answer is equal to 1). We just take log again for the decimal x (the remainder of 2's that we need.) Log2 (1) = 0 Thus sLog2 (16) = 3+0 = 3 Well let's look at what happens when we go backwards through the same process to see what happens to the remainder. Log2 (Log2 (Log2 (Log2 (16)))) = 0 Log2 (Log2 (Log2 (16))) = 2^0 Log2 (Log2 (16)) = 2^2^0 Log2 (16) = 2^2^2^0 16 = 2^2^2^2^0 = 2^2^2 = 2^^(3+0) The remainder adds an extra '2' to the top of the power tower and the additional 2 is raised to the power of the remainder For 0 ≤ x ≤ 1 By definition sLog a(a^^3+x) => a^a^a^a^x By definition of Tetration a^^3+x = a^a^^2+x = a^a^a^^1+x = a^a^a^a^^x a^a^a^a^^x = a^a^a^a^x a^a^a^^x = a^a^a^x a^a^^x = a^a^x a^^x = a^x by definition for 0 ≤ x ≤ 1 2^^1.5 = 2^2^0.5 = 2^√2 ≈ 2.6651441427...
@aurithrabarua4698
@aurithrabarua4698 6 жыл бұрын
Loved it!!! New notations. Thanks Steve.. 😊😊😊
@richikhaldar4846
@richikhaldar4846 6 жыл бұрын
#yay Chen lu!
@oscarahlke1585
@oscarahlke1585 5 жыл бұрын
As always he made it waaaayy longer than it needed to be!
@samueln2917
@samueln2917 6 жыл бұрын
I'm from Indonesia and i find this interesting!
@floppy8568
@floppy8568 Жыл бұрын
"this 3 is meant to be at the top-left corner" it is at the top-left corner
@acshyamraj8167
@acshyamraj8167 6 жыл бұрын
Differentiation made easier by taking logs of both sides, twice. taking y = x^x^x ; logy = x^x logx Taking logs of both sides again, log(logy) = log(x^x) + log(logx) ie log(logy) = x logx + log(logx) Now differaentiating both sides with respect to x, (1/logy)(1/y) dy/dx = x(1/x) + logx + (1/logx)(1/x) Hence dy/dx = y logy [ 1 + logx + (1/xlogx) ] = x^x^x . x^x logx [ 1 + logx + (1/xlogx) ]
@Magnetron692
@Magnetron692 Жыл бұрын
Awesome! Thank you!!
@anmoljawalia5967
@anmoljawalia5967 4 жыл бұрын
Brother u are really a genius !!!💖👏👏👌👑
@jimhrelb2135
@jimhrelb2135 5 жыл бұрын
Not only he uses the up arrow, he rewrote the answer in 3 different ways to make the video 10+ mins. My man is taking the wise words from Pewdiepie.
@srinidhikabra5317
@srinidhikabra5317 4 жыл бұрын
I got the answer... yeah, I watched the video quite late, but I found the answer all on my own, and then watched the rest of the video, I also got the answer to that last question you asked 😄( it might not seem like a big deal, but I am in 10th grade 😅😅😅 ) it was fun doing it... keep posting such videos 👍🏻👍🏻👍🏻
@lakshaykumarwalia4163
@lakshaykumarwalia4163 5 жыл бұрын
really enjoy your style 👍
@Drekal684
@Drekal684 6 жыл бұрын
Wow, that's really cool! Now I'm curious if it's possible to differentiate n↑↑x.
@DoctorT144
@DoctorT144 5 жыл бұрын
We would first have to figure out what x^^1.5 would even mean. I've done a lot of research on this and there seems to be no conclusive answer.
@militantpacifist4087
@militantpacifist4087 2 жыл бұрын
Do a video on solving tetration equations please as well as tetration with imaginary numbers and taking the super-root of those numbers.
@mokouf3
@mokouf3 5 жыл бұрын
For Expert: Tetration n times: Write it as T(x,n) so that T(x,1) = x, T(x,2) = x^x and so on, write its derivative as T'(x,n) Construct a reduction formula, start from n=2, try to solve T'(x,n) for all integers n. (tedious like hell)
@alessandroarmenti5562
@alessandroarmenti5562 4 жыл бұрын
(I'm new in calculus so please don't judge me too badly) A nice rule for the derivative of n^xcould be d/dx n^x=n^x*(n-1)^x...2^x(ln(x)^(n-1)+ln(x)^(n-2)+ 1/x (ln(x)^(n-3)+ln(x)^(n-4) +...+1)). The approach have been to do the derivative for 3^x 4^x and 5^x and I noticed this trend.
@phatkin
@phatkin 5 жыл бұрын
You could also write it in a more "finished" (?) form as: d(x↑↑3)/dx = ln(x↑↑6) + ln(x↑↑4)ln(x↑↑3) + (x↑↑3)(x↑↑2)/x
@DiabaLompoSouleymane
@DiabaLompoSouleymane 5 ай бұрын
Trop fort ! Merci
@shayanmoosavi9139
@shayanmoosavi9139 5 жыл бұрын
Wow. I learned a new thing today. Thanks.
@ihti20
@ihti20 4 жыл бұрын
Left-upper index is usually used for bottom-order tetration, for right-order hyperoperators arrow notation is basic. Left hyperoperators are rarely used though so it's specified explicitly in that case.
@Xnoob545
@Xnoob545 Жыл бұрын
I have never heard that
@Player_is_I
@Player_is_I Жыл бұрын
It can further simplify by bringing the 2 from the natural log of x in front of it then add it to the other one
@damianbla4469
@damianbla4469 4 жыл бұрын
09:58 Using Knuth's arrow notation, "1/x" (another way to write this is of course "x^(-1)") could be written as "x & (-1)" (where the symbol "&" represents the "up arrow" symbol in the Knuth's arrow notation)?
@ganster1239
@ganster1239 6 жыл бұрын
Now Dr. Peyam has to make a video about the generalization d/dx(x↑↑a), where a represents any rational number!
@paull2937
@paull2937 2 жыл бұрын
Since multiplying a number by a non-integer number and taking a number to a non-integer power are both possible, is tetrating a number to an non-integer number possible? Is it also possible for the other infinitely many arithmetic operations?
@s1ddh4r7h.p
@s1ddh4r7h.p 10 ай бұрын
thinking about fractional tetration
@milozeman9641
@milozeman9641 2 жыл бұрын
and what is derivation of x pentation x?, I know how to derivate any tetration where is real number, but how to derivate this?, its like (x tetration x tetration x tetration x...)x*, and I dont know how to derivate
@zackm5693
@zackm5693 6 жыл бұрын
Awesome as always!
@aaronsmith6632
@aaronsmith6632 4 жыл бұрын
Thanks, I've always wondered this!
@hbarudi
@hbarudi 3 жыл бұрын
You can combine x^x with x^x^x by using the multiplication of exponential expressions adds the exponent rule where (x^x)*(x^x^x)=x^(x+x^x).
@josephcoon5809
@josephcoon5809 3 жыл бұрын
3:00 Is the up arrow supposed to be synonymous with the carat sign? So that x^3 is exponentiation and x^^3 is retraction?
@arthurgames9610
@arthurgames9610 5 жыл бұрын
Do the derivity of x⬆️⬆️x
@boomclan5163
@boomclan5163 6 жыл бұрын
I am ... amazed
@FuriousSanta
@FuriousSanta 6 жыл бұрын
Alternatively, you can rewrite the given equation as: ln(ln(y)) = ln(ln(x)) + x*ln(x), and then try differentiating the equation in this form.
@flamingpaper7751
@flamingpaper7751 6 жыл бұрын
Tetration in general needs a complete follow up video
@vonneumann3592
@vonneumann3592 6 жыл бұрын
Please make videos on mulrivariable calculus
@activetutorial
@activetutorial 3 жыл бұрын
4:37 How to Intigrate that?
@МаксимЯромич
@МаксимЯромич Жыл бұрын
Tetration is the first step to big numbers... The goes pentation, then hexation, then Knut's notation, then Conway's notation, and then the fast-growing hierarchy, which will bring you very far away from what is considered 'normal'.
@BakersTaste
@BakersTaste 5 жыл бұрын
Just a pointer... At 3:50, you said that ln and e cancel one another. Really, they undo one another. Crossing them out to indicate that they 'cancel' would also be improper notation.
@alberteinstein3612
@alberteinstein3612 3 жыл бұрын
I’ve heard of Knuth’s Arrow Notation and Bower’s Operators but not Tetration Notation... Thanks!
@kchannel5317
@kchannel5317 3 жыл бұрын
Man it would be cool to have this guy as a calculus teachers
@archithtelukunta4599
@archithtelukunta4599 6 жыл бұрын
I did get the generalisation for the tetration of x to any natural index(excluding 1).Well,it goes like this, Let x(n) be the tetration of x to a natural number n * denotes the product of the tetrations(pi-product function)[*(k=r to k=n) x(k)=x(r)x(r+1)x(r+2)........x(n) # denotes summation(sigma function) [#(r=1 to r=n) x(r)=x(1)+x(2)+.........x(n)] Then, d[x(n)]/d(x)=(1/x)[*(k=1 to k=n)x(k)(ln(x))^n-1 + #(r=1 to r=n-1)[*(k=r to k=n)x(k)[(ln(x))]^n-r-1]] Where #(r=1 to r=n-1)*(k=1 to k=n) denotes the summation of the products. Put it on paper for easy understanding.Do note it is only valid for natural number greater than or equal to 2. Just put a reply if I had gone wrong somewhere.
@enzoys
@enzoys Жыл бұрын
I would like to know if tetration has properties. like, if it was a x^2 * x^3 right there, you would be able to add the exponents, but it dosn't seem to be the case with tetration
@tjdtn0
@tjdtn0 Жыл бұрын
어느순간부터 내 알고리즘에떠서 12math처럼 잼게 보고있슴다 ㅋㄴㅋㅋ
@Hippienolic2
@Hippienolic2 5 жыл бұрын
I’ve taken 3 levels of calc and that notation never came up. Great video
@somnathdas8530
@somnathdas8530 4 жыл бұрын
It’s so cool!
@stealthgamer4620
@stealthgamer4620 Жыл бұрын
I was also thinking of using substitution and logarithmic differentiation. So solve for x^u, where u= x^x. Use logarithmic differentiation for u first, then after finding u’, use it to find x^u. I think this is long and messy though.
@RiteshNEVERUNIFORM
@RiteshNEVERUNIFORM 4 жыл бұрын
One thing my Maths Sir once told about differentiating x^x is that "first differentiate it as constant^variable then differentiate it as variable^constant and add them that is the derivative of x^x" idk if it works for any tetration
@boium.
@boium. 6 жыл бұрын
So what's the general form of d/dx(x↑↑n )?
@YellowBunny
@YellowBunny 6 жыл бұрын
This already isn't true for x↑↑2.
@moskthinks9801
@moskthinks9801 6 жыл бұрын
Man, I've been studying this relation for hours, and something seems to pop up. First, I've found a reduction formula. Second, I've seen this behavior pop up: The derivative of x^x is x^x(1+ln(x)), normal, right? x^x^x is x^x^x*x^x(1/x+ln(x)+ln^2(x)), the last two are normal. x^x^x^x is x^x^x^x*x^x^x*x^x(1/(x^x*x)+ln(x)/x+ln^2(x)+ln^3(x)), we see the behavior 1 over x^x*x, x, 1, 1 x^^5 is with behaviour x^x^x*x^x*x, x^x*x, x, 1, 1 So it's for now the best to study why this behavior happens and then we'll have a formula to calculate d/dx (x^^n)
@moskthinks9801
@moskthinks9801 6 жыл бұрын
I think the behavior happens because when we apply my reduction formula, we have new tetrations of x which add on to the 1/x, and the previous terms are preserved. D(3)=(x^^3)((x^^2)/x+ln(x)*x^x(1+ln(x))) = x^^3*x^^2(1/x+ln(x)+ln^2(x)) The cancellation adds 1/x D(4)=(x^^4)((x^^3)/x+ln(x)*x^^3*x^^2(1/x+ln(x)+ln^2(x))) = x^^4*x^^3(1/x+ln(x)^x^^2(1/x+ln(x)+ln^2(x))) But then we have to divide x^^2 which adds to the 1/x term, so it becomes x^x*x = x^^4*x^^3*x^^2(1/x^x*x+ln(x)(1/x+ln(x)+ln^2(x))) And the other terms are preserved. So you see what I mean?
@moskthinks9801
@moskthinks9801 6 жыл бұрын
Why is my comment not showing up?!? Anyway, in the comment, I wrote this: "We can use a reduction formula for the derivative of x^^n d/dx (x^^n) = d/dx (e^((x^^(n-1)ln(x)))) = (x^^n)((x^^(n-1))/x+ln(x) d/dx (x^^(n-1))) Or saying D(n) = (x^^n)((x^^(n-1))/x+ln(x)*D(n-1)))"
@maxwongpt2channel328
@maxwongpt2channel328 6 жыл бұрын
x↑↑2*x↑↑3*x↑↑4*...*x↑↑n*(1/x+ln(x)+ln(x)^2+ln(x)^3+....+ln(x)^(n-1)) I am here to comment with a gaming account again lol
@itachi2011100
@itachi2011100 6 жыл бұрын
You say chain rule, I hear Chen Lu.😂
@souhilaoughlis5832
@souhilaoughlis5832 4 жыл бұрын
Me too I heard chen lu
@Bolpat
@Bolpat 5 жыл бұрын
Have you considered also mentioning the blue pen in the name?
@pascalbruyere7108
@pascalbruyere7108 2 жыл бұрын
Is there any concrete application for tetractions in physics, chemistry, or anything else?
@anaunaga5471
@anaunaga5471 10 ай бұрын
The rule is x↑↑n = (x↑↑n) * (d/dx ( x↑↑(n-1) * ln(x) + x↑↑(n-1) *(1/x)) Thats the best you can do its basically the original function multiplied by the product rule of x↑↑(n-1) and ln(x)
@dogbiscuituk
@dogbiscuituk 6 жыл бұрын
Is there a general tetration rule? I mean, what is the derivative of... f(x) ^^ g(x)
@sharpnova2
@sharpnova2 4 жыл бұрын
@Hapedise Divide19 wrong
@justacutepotato2945
@justacutepotato2945 4 жыл бұрын
@@sharpnova2 why
@89roddy
@89roddy 6 жыл бұрын
I think I have the general formula where I set x↑↑0=1 (Is that right?). First a recursion formula: d/dx(x↑↑n) = x↑↑n · (d/dx(x↑↑(n-1)) · lnx + x↑↑(n-1) · 1/x) After applying that a few times I found a pattern, so here's the formula (I think): d/dx(x↑↑n) = 1/x · sum_(k=0 to n-1) of [(lnx)^(n-1-k) · product_(m=k to n) of (x↑↑m)] d/dx(x↑↑0) = d/dx(1) = 1/x · sum_(k=0 to -1) of [(lnx)^(-1-k) · product_(m=k to 0) of (x↑↑m)] = 1/x · 0 = 0 d/dx(x↑↑1) = d/dx(x) = 1/x · sum_(k=0 to 0) of [(lnx)^(-k) · product_(m=k to 1) of (x↑↑m)] = 1/x · [(lnx)^(0) · product_(m=0 to 1) of (x↑↑m)] = 1/x · x↑↑0 · x↑↑1 = 1/x · 1 · x = 1 d/dx(x↑↑2) = d/dx(x^x) = 1/x · sum_(k=0 to 1) of [(lnx)^(1-k) · product_(m=k to 2) of (x↑↑m)] = 1/x · [(lnx)^(1) · product_(m=0 to 2) of (x↑↑m) + (lnx)^(0) · product_(m=1 to 2) of (x↑↑m)] = 1/x · [lnx · x↑↑0· x↑↑1 · x↑↑2 + x↑↑1 · x↑↑2] = 1/x · [lnx · 1· x· x^x + x · x^x] = lnx· x^x + x^x = x^x · (lnx+1) d/dx(x↑↑3) = d/dx(x^x^x) = 1/x · sum_(k=0 to 2) of [(lnx)^(2-k) · product_(m=k to 3) of (x↑↑m)] = 1/x · [(lnx)^(2) · product_(m=0 to 3) of (x↑↑m) + (lnx)^(1) · product_(m=1 to 3) of (x↑↑m) + (lnx)^(0) · product_(m=2 to 3) of (x↑↑m)] = 1/x · [ln²x · x↑↑0 · x↑↑1 · x↑↑2 · x↑↑3 + lnx · x↑↑1 · x↑↑2 · x↑↑3 + x↑↑2 · x↑↑3] = 1/x · [ln²x · 1 · x · x^x · x^x^x + lnx · x · x^x · x^x^x + x^x · x^x^x] = ln²x · x^x · x^x^x + lnx · x^x · x^x^x + x^x · x^x^x · 1/x = x^x^x · x^x · (ln²x+lnx+1/x)
@moskthinks9801
@moskthinks9801 6 жыл бұрын
Tetration! Knuth Arrow Notation! #YAY Note: We can use a reduction formula for the derivative of x^^n d/dx (x^^n) = d/dx (e^((x^^(n-1)ln(x)))) = (x^^n)((x^^(n-1))/x+ln(x) d/dx (x^^(n-1))) Or saying D(n) = (x^^n)((x^^(n-1))/x+ln(x)*D(n-1)))
@radueduard587
@radueduard587 4 жыл бұрын
Funny is that there is a rule that alows us to derivate anything no matter how tetrated or stacked it is. Basically instead of doing what he did you can derivate the whole thing a function at a time from outside to inside and write the product of those partial results
@Saffron_Krishna
@Saffron_Krishna 3 жыл бұрын
Great 👍
@majkgmajkg2613
@majkgmajkg2613 6 жыл бұрын
Graham's number on the spot! :o
@amardeepsingh620
@amardeepsingh620 6 жыл бұрын
Hello sir i am from india. Awesome your maths
@vinayaklahoti
@vinayaklahoti 4 жыл бұрын
Solve for this; Cow tied at the corner of a circular field is able to graze 3/4th of the field. What is ratio of length of its rope and radius of the field?
@medianasian
@medianasian 6 жыл бұрын
Change the 3's at graham number to x and find the derivative of it
@cubicardi8011
@cubicardi8011 6 жыл бұрын
muhammad fatih omg, brutal
@titouanvasnier2347
@titouanvasnier2347 6 жыл бұрын
I don’t think that it’s really possible, it would be way too long and there would be mistakes
@medianasian
@medianasian 6 жыл бұрын
@@titouanvasnier2347 yea i know, im just messin around, and chen lu think he can take everything on so i challenge hin
@dlevi67
@dlevi67 6 жыл бұрын
The derivative of Graham's number is definitely 0. It's a constant.
@Bananasforthesoul
@Bananasforthesoul 6 жыл бұрын
dlevi67 got’em
@MYNAME_ABC
@MYNAME_ABC Жыл бұрын
Before differentiating, we need a clear understanding of fractional tetration, otherwise it is a discontinuous function, that cannot be differentiated at all, right?
@spandansreyanshupadhee
@spandansreyanshupadhee 4 жыл бұрын
I love this
Calculus teacher vs L'Hopital's rule students
13:21
blackpenredpen
Рет қаралды 99 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
Solutions to x^y=y^x
13:09
blackpenredpen
Рет қаралды 1,1 МЛН
Beyond Exponentiation: A Tetration Investigation
24:46
Tetrolith
Рет қаралды 113 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 629 М.
Integral of x^i
10:54
blackpenredpen
Рет қаралды 583 М.
The Rare Levels Beyond Exponents
14:39
Combo Class
Рет қаралды 422 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 144 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
The magical geometric derivative.
15:05
Michael Penn
Рет қаралды 48 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,6 МЛН
Why is the derivative of e^x equal to e^x?
11:59
blackpenredpen
Рет қаралды 403 М.