Only a teacher who loves his subject can make more teachers. You are awesome sir. Love you from India
@blackpenredpen6 жыл бұрын
Thanks!
@FaerieDragonZook5 жыл бұрын
For the second integral, instead of using those really long and skinny rectangles with widths along the x-axis, it would be easier to take the 60 as equal to the full x domain (4) times the full y range (15), then subtract out rectangles with widths along the y axis. There are 15 of them, they each have width 1, and they each have length sqrt(n), for n from 1 to 15.
@angelmendez-rivera3516 жыл бұрын
1. Consider the integral from a to b of f[floor(x)]. You can use the connection rule of integration to separate this integral into three integrals, from the intervals a to floor(a), floor(a) to floor(b), and floor(b) to b. Do make sure that a < b for simplicity, which can always be ensured, because if you have an integral from b to a when b > a, then you can switch the order of integration by multiplying by -1. Then evaluate each separately, which merely involves taking the area of rectangles. In particular, the integral from floor(a) to floor(b) is equal to the sum of f(n) from n = floor(a) to n = floor(b) - 1. The integral from a to floor(a) is simply f[floor(a)]·[floor(a) - a]. Depending on your definition of {x}, the latter could simply be -f[floor(a)]·{a}. Meanwhile, the integral from floor b to b is simply f[floor(b)]·[b - floor(b)] = f[floor(b)]·{b}. Combining all three gives that the integral from a to b of f[floor(x)] is (f[floor(b)]·{b} - f[floor(a)]·{a}) + S[floor(a), floor(b) - 1; f(n)], where S[floor(a), floor(b) - 1; f(n)] is the sum from n = floor(a) to floor(b) - 1 of f(n). This works for any f and any interval of the real numbers.
@jzanimates23526 жыл бұрын
Blackpenredpen you have 200K subs! Congrats!
@SteamPunkLV6 жыл бұрын
you can hear people cheering at 1:50
@blackpenredpen6 жыл бұрын
Thanks!!!!!
@timka32445 жыл бұрын
But it is deserve 50 million subs
@0_-3 жыл бұрын
Now he has 750K
@benjamingiribonimonteiro93936 жыл бұрын
Congratulations for 200k subscribers! Awesome content as always, love your channel
@angelmendez-rivera3516 жыл бұрын
2. Consider the integral of floor[f(x)] from a to b, with respect to x. If f is piecewise continuous in the interval, then there exists some set {c_1, c_2, ..., c_k} contained in the interval (a, b), possibly the empty set, such that for all ε > 0, f(c_i - ε) < n_i & f(c_i + ε) > n_i, where n_i indexes over a set of integers in the range of f. If this set is non empty, then you can consider the integrals from a to c_1 of floor[f(x)] + integral from c_1 to c_2 floor[f(x)] + ••• + integral c_(k - 1) to c_k floor[f(x)] + integral c_k to b floor[f(x)]. Now each integró is trivially given, since floor[f(x)] is a constant in each interval, though a different one in each interval. An integral from c_i to c_(i + 1) of floor[f(x)] is equal to (n_i)[c_(i + 1) - c_i], where n_i is the corresponding integer (from the set of indexed integers I described above) to c_i as outlined in the epsilon-inequalities I stated. Combining all such integrals gives (n_1)(c_2 - c_1) + (n_2)(c_3 - c_2) + ••• + [n_(k - 1)][c_k - c_(k - 1)] = -(n_1)(c_1) - (n_2 - n_1)(c_2) - ••• [n_(k - 1) - n_(k - 2)][c_(k - 1)] + [n_(k - 1)]c_k. Meanwhile, from a to c_1 you have floor[f(a)][c_1 - a], and from c_k to b you have n_k(b - c_k). If the set is empty, then floor[f(a)] = floor[f(b)] = M. Then the integral is simply M(b - a).
@i_am_anxious026 жыл бұрын
Yo! Congrats on 200k subs 1/(1-x), you deserve it man! Actually, no. You deserve way more than that.
@blackpenredpen6 жыл бұрын
Pi is the best Thank you!!!!
@i_am_anxious026 жыл бұрын
blackpenredpen you’re awesome man, love your vids! Keep up the great work!
@kimothefungenuis6 жыл бұрын
I think a good advice if you want to expand beyond 400k subs is by going on multiple social media websites . Don't stop at youtube. Go to Facebook, twitter , tumblr etc. . And also a good idea is to translate your video into more languages so your content can be seen by people from multiple countries . However, my advice is theoritical,not sure how it's going to work practically
@blackpenredpen6 жыл бұрын
Hi Kimo, thanks for the comment. I am already on twitter but not fb. The translation idea will work however it will take a tremendous amount of time (or money) of me to do so. I might be able to do some for some of my popular videos but certainly not all. Thanks again for your input.
@kimothefungenuis6 жыл бұрын
Your welcome and my actual name is karim
@blackpenredpen6 жыл бұрын
kimo the fun genius thanks karim
@roamlog91294 жыл бұрын
The last problem can be solved geometrically very easily
@ghislaindebusbecq88644 жыл бұрын
That's a 600k+ subscribers ! Congratulations. I would have drawn the parabola y=x^2 for the second integral.
@omarifady6 жыл бұрын
Where’s the link of sum of first n square roots ? In the description there’s sum of fist n squares...
@angelmendez-rivera3516 жыл бұрын
Fady Omari Exactly what I said. I’ll try to find the link on Google on my own.
@blackpenredpen6 жыл бұрын
Just added, sorry.
@omarifady6 жыл бұрын
blackpenredpen Thanks!!
@Uni-Coder6 жыл бұрын
Unfortunately, there is no exact and finite formula. Only a series.
@angelmendez-rivera3516 жыл бұрын
mrbus2007 I saw. There is no exact formula for the of powers of n unless the powers are natural numbers, although even then this formula is still given by an obscure summation involving the Bernoulli numbers.
@adrician6 жыл бұрын
Will you ever be doing a video on Lagrange's multipliers?
@alpennyworth87706 жыл бұрын
He made a video on it last year. kzbin.info/www/bejne/mZmXgYOmlMeEqqs
@yashkrishnatery90825 жыл бұрын
Bruh .. !! What a wrist watch.... I've been looking at the watch at half of the time of the video
@shandyverdyo76886 жыл бұрын
I check on geogebra for this integral and it's match with ur answer. Just YAY! First integral is 14 and the second is 19,52
@CoolName043 жыл бұрын
Thanks that was so helpful 👌👌
@dr.rahulgupta75734 жыл бұрын
Excellent presentation of the topics in a simple manner. Thanks with sincere regards DrRahul Rohtak Haryana India
@soumyachandrakar91006 жыл бұрын
Congratulations! on 200k subscribers!!!!! yay...yay...yay
@irwandasaputra93152 жыл бұрын
1/3 x^3 1/3*4^3 1/3*64 64/3
@mark_tilltill66644 жыл бұрын
Thank you for two things: That these integrals exist. That with a little courage they can be solved.
@ayanacharya97476 жыл бұрын
Awesomely done!!!
@dipesh-singla5 жыл бұрын
Can you make worksheets on topics like derivate and integral and all other topics with their solution also so people of different country can solve the different type of ques of your country
@roamlog91294 жыл бұрын
We are thinking with respect to x-axis. We can solve more easily Just rotate the screen and think w.r.t. y-axis you can see the last bar root(16) comprises a bigger rectangle whose area is 15×root(16) and then we are subtracting bar of area[ root(1)×1+root(2)×1+....+root(15)] Just rotate
@BassmanRiyadh6 жыл бұрын
Hello, I have a question hope you can make a video about.. the domain an range of (y = (3 - sin(x))^0.5)
@EternalLoveAnkh3 жыл бұрын
This is very interesting, but you are doing this by hand. I would like to see a proof of the indefinite integral of the floor function and its powers. Can you do that? RJ
@ilya3458 Жыл бұрын
Thank you!
@pawansaini787795 жыл бұрын
Thanku sir Your video is very supportive Thanks
@aodoemela5 жыл бұрын
How would you do 2^X
@joryjones68086 жыл бұрын
Do a vid on Euler-Mascheroni constant.
@Walczyk4 жыл бұрын
i like this!! great work
@arbitrarilyarbitrary84406 жыл бұрын
There’s no indefinite integral that would follow regular integration rules. However I bet you could think of a nice summation to calculate the area for a floor function.
@Kanha03216 жыл бұрын
Nice sir
@leecherlarry3 жыл бұрын
interesting, compi can calculate the battle two: *Integrate[Floor[x]^2, {x, 0, 4}];* *Integrate[Floor[x^2], {x, 0, 4}];*
@aashsyed12773 жыл бұрын
hi from sybermath
@leecherlarry3 жыл бұрын
@@aashsyed1277 hi man, all good here, how are you? 😹😎
@leecherlarry3 жыл бұрын
I'm having compi trouble after the OS upgrade from Stretch to Buster. today I'm trying to install old Stretch image... 😨😂
@aashsyed12773 жыл бұрын
@@leecherlarry oh dear
@aashsyed12773 жыл бұрын
@@leecherlarry fine!
@bopaliyaharshal23993 жыл бұрын
0 to a ∫ [ x ^(2) ] if [.] Is GIF ( greatest intergel function ) then answer is. ( ( a^(2) - 1)a - 1 ) -summation of r=2 to r= ( a^(2) - 1 ) ∑ √(r).
@bopaliyaharshal23993 жыл бұрын
This is jee main key 😱
@angelmendez-rivera3516 жыл бұрын
200K subs! Looks like you will make it to 400K before the end of the year Also, the link on the description only gives the sum of the first n squares, not the first n square roots, or so it appears. You could define a recursive formula, though, I think
@blackpenredpen6 жыл бұрын
Thanks Angel!! I think I can hit 300k without problem but 400k is a bit challenging.
@carlosberrio29065 жыл бұрын
Muy bien resueltas estas integrales
@balazsb20406 жыл бұрын
But can you do the same with {x}^2 and {x^2}?
@MrConverse6 жыл бұрын
But who wins the battle of the integrals?
@dancifier4056 жыл бұрын
Congratulations for 200K subscribers ...😎😎😎🤗🤗🤗🤗🤗🤗🤗🤗#yay......... So please integrate tan(x) from 0 to (π/2) You are like my 1/(1-x) teacher😇😇😇😇😇😇😇😇😇
@awawpogi30366 жыл бұрын
congrats for 200k subs
@blackpenredpen6 жыл бұрын
Vincent William Rodriguez thank you!!!
@polaris_babylon6 жыл бұрын
So, Calc 1 wears Prada Lu?
@Kanha03216 жыл бұрын
恭喜,您已达到20万订阅者 今年,您将完成四十万订户的目标。 来自印度的问候 Sorry for mistakes
@blackpenredpen6 жыл бұрын
Shubham Gupta Thanks. you can just reply in English.
@Kanha03216 жыл бұрын
@@blackpenredpen I love Chinese language that's why I reply in Chinese
@sankalpmishra16866 жыл бұрын
you are simply awesome, 💞 from India
@JoshuaHillerup6 жыл бұрын
Next do the integral involving the fractional part?
@blackpenredpen6 жыл бұрын
in that case, we can just change {x}=x-[x] : )
@antaresguitar6 жыл бұрын
2E 5
@angelmendez-rivera3516 жыл бұрын
Leon Ravenclaw ?
@antaresguitar6 жыл бұрын
@@angelmendez-rivera351 2*10^5
@ThinkDifferentlier6 жыл бұрын
Are these functions even integrable in Riemann sense?
@ssdd99116 жыл бұрын
halfway there
@jarikosonen40795 жыл бұрын
I hope to see e^floor(x) and floor(e^x) integrals also...
@entropy40483 жыл бұрын
How do you integrate floor(e^x) from x=0 to x=4??
@jarikosonen40793 жыл бұрын
@@entropy4048 Not sure, maybe finite sum (with a lot of elements). Maybe computer works to make it happen. Integrate from 0 to 1 would be only 2 elements. The x-step positions are x(n)=ln(n) and height is n and summing these rectangles areas: sum (ln(n+1)-ln(n))*n from 1 to 53 + (4-ln(54))*54. This series evaluation looks difficult, but its about 51.6798877368... The series looks it might be "telescoping series", but I didn't try find it in detail. There is actually accurate answer as: 216 - ln(230843697339241380472092742683027581083278564571807941132288000000000000), but not sure how it is evaluated. It looks like some type of factorial (as there is a lot of zeroes at the end)... like 216-ln(54!) As its sum or logaritms, it may turn product inside the ln(). Then it solves, I guess. So if upper bound for integral is "n" the results would be: AREA=n*floor(e^n)-ln((floor(e^n))!). Maybe better question is what is: integ {1-ceil(x)+floor(x)} dx from 0 to +Inf. It could be 'indefinite' or something like -1/12, etc..
@mathematicadeestremo63966 жыл бұрын
I think these are easy....let describe a tough one
@mathranger35866 жыл бұрын
e^ln (i)
@ZirTaaah6 жыл бұрын
nice video :) can u try intergral of : sin(x)/sqrt(1+sin(x)*cos(x)
@kevinpior52655 жыл бұрын
I‘ve a question... what’s floor function of 1.9999 period?
@_Grative4 ай бұрын
1.9 period is 2 so its 2
@alainrogez84854 жыл бұрын
For the second integral, if n goes to infinity, it seems the result goes to minus infinity. It sounds weird.
@呂永志-x7o6 жыл бұрын
第二題用橫切的比較容易看
@arnavagarwal29144 жыл бұрын
Dude that 4 looks that psi
@zmaj123216 жыл бұрын
Aww you almost clicked on the problem where I had top solution ;( so close.
@keonscorner5162 жыл бұрын
so integral = sum with floor
@mathematicswithjoy2 жыл бұрын
Love from India🇮🇳🇮🇳🇮🇳🇮🇳
@Kanha03216 жыл бұрын
200k😎😎😎🥳🥳🥳🥳🥳🤠🤠🤠😇😇😇
@safwanahmad38874 жыл бұрын
please can you solve this problem ∬⌊x+y⌋ dx dy 01 0 1
@Germankacyhay3 жыл бұрын
👍
@lox71822 жыл бұрын
It isn't that hard to find a general formula...
@mathssolverpoint60596 жыл бұрын
Too easy
@raymondstheawesome4 жыл бұрын
am i the only one who thinks that the answer should be 1 pm but the answer isn't there?