The easier solution is to do substitution x --> 2^m. Then, we get 2^m = 32m, or m = 2^(m-5), hence m is also a power of two (if we are concerned only with the integer solutions). The smallest value m=8 satisfies the equation. hence m=8, x=2^8 = 256.
@noname-ed2un5 ай бұрын
Can you explain this more. I don't understand
@cave2song5 ай бұрын
2^x = x^32 ln2 2^x = ln2 x^32 x ln2 2 = 32 ln2 x x = 32 ln2 x x / (ln2 x) = 32 x x / (ln2 x) < 0 -> x must larger than 1 x = 256 -> 256 / (ln2 256) = 32
@knotwilg35964 ай бұрын
@@noname-ed2un He starts from the assumption that X will be a power of 2. This is a good start for finding a solution, since it reduces the complexity of the problem, because both sides are now powers of two. Set x = 2^m 2^(2^m) = (2^m) ^32 2^(2^m) = 2^32m ------ power of power --> multiply exponents 2^m = 32m ---- equal powers --> equal exponents Now this is still not trivial but left side is a power of 2 and right side has 32, which is also a power of 2. Hence m itself must be a power of 2. Set m = 2^k 2^(2^k) = 32 * 2^k 2^(2^k) = 2^5 * 2^k 2^(2^k) = 2^(5+k) 2^k = 5+k Now we're down to small numbers and we can do a quick check for k = 1, 2, 3 ... to find 2^3 = 8 = 5+3 So m = 8 and x = 2^8 = 256 This was a bit lengthy but hopefully helpful.
@alejomdp7 ай бұрын
Your answer is right but when you analize the graphic of 2^x and x^32 the graphic of both functions intersects at three points: x ≈ -0.979, x ≈ 1.022 AND x = 256. For those first two solutions I couldn't find an analytical way to calculate their exact value. I know they are irrational but I couldn't find a way to express them with roots or even something with the number e.
@PIANOJOE76 ай бұрын
can´t be solved analytically
@albedogray6 ай бұрын
@@PIANOJOE7why?
@albedogray6 ай бұрын
Also realized that the equation has 3 roots, can't find an analytical solution (
@adrianlautenschlaeger85785 ай бұрын
@@PIANOJOE7 it is possible! Take a look at the Lambert-W-Function. In Wolframalpha to be used as productlog(x).
@PIANOJOE75 ай бұрын
@@adrianlautenschlaeger8578 Well, good hint. This function was unkown to me (or already forgoten 🙂...). So you´re right.
@DakshSood-pv3pl6 ай бұрын
Very good-question and explanation
@BZKnowHow6 ай бұрын
DIFFICULT Question but you explain very easily
@yapadek30988 ай бұрын
Hi, and thank you for your videos. How can you be sure this solution, obtainend by identification (is that the word ?) is unique ?
@ああ-s5m8m7 ай бұрын
xは多分2^tと書ける、指数部分比較して2^t=32tを解く→t=8からx=256
@ayugaming30477 ай бұрын
Could you please clarify my brother? The steps ...
@ああ-s5m8m7 ай бұрын
@@ayugaming3047 First of all I thought the answer to this question could be expressed as 2^t. Then I substituted and compared the exponential part: 2^t=32t and 2^t is monotonically increasing, so there is one solution. So t=8. Sorry for my poor English
@ayugaming30477 ай бұрын
@@ああ-s5m8m your English is fine. So, what calculations did you use after the step 2^x = 32t? Did you just guess?
@ああ-s5m8m7 ай бұрын
@@ayugaming3047 Mental arithmetic
@ayugaming30477 ай бұрын
@@ああ-s5m8m can you introduce that to me?
@maths_withvarsha3 ай бұрын
Simply awesome 👌. I liked. Nd subscribed too.
@pianoplayer123able8 ай бұрын
The other solution is: 1/e^lambertw(-(ln(2)/32))≈1.0223
@allozovsky8 ай бұрын
But there should also be a negative real solution, since (−x)³² = x³² and 2ˣ = (1/2)⁻ˣ, so we get an equation (1/2)⁻ˣ = (−x)³² for −x ∈ ℝ.
@dmitrymelnik82967 ай бұрын
@@allozovsky Functions 2^x and x^32 intersect only in two points.
@allozovsky7 ай бұрын
You may plot them on the interval from −1.5 to 1.5 and find out that they indeed intersect at two non-integer points (and a third one at x = 256).
@dmitrymelnik82967 ай бұрын
@@allozovsky yeah, my bad.
@allozovsky7 ай бұрын
It's alright. Solving for irrational roots requires application of the Lambert W function or using numerical methods, so they can't be found by elementary algebraic transformations anyway.
@AtinafAhmadАй бұрын
I like your way is so amazing
@oliverdauphin2368 ай бұрын
2^x= x^32 Posons x=2^n L èquatiion devient 2^(2^n)=(2^n)^32 Donc 2^n=32n en identifiant les exposants Posons n=2^a L’équation devient 2^(2^a}=(2^5)*(2^a) Donc 2^(2^a}=2^(5+a) Donc 2^a=5+a en identifiant les exposants Or 2^3=8=5+a Donc a=3 Donc n=2^3=8 Donc x=2^8=256 Donc 2^256=256^32 On vérifie : 2^256=(2^8)*32=2^(8*32)=2^256
@Ha_Gia_20227 ай бұрын
Smart solving ! Thanks. Just last eq. 2^a = (a+5) how to obtain a=3 ?
@maibeez3 ай бұрын
Pourquoi avez vous mis x=2^n alors que vous ne connaissez pas sa valeur exacte? Expliquez moi s'il vous plaît
@attica79804 ай бұрын
In addition to the solution x=256, the equation also has a real solution between -1 and 0. With a problem like this, it would be nice to be specific whether to find all real solutions, or to find only solutions that are positive integers.
@ivangorin12547 ай бұрын
В этом уравнении имеется 3 корня -0,97902 1,022393 256
@antonsemenov5155Ай бұрын
Иван, каким образом были найдены два других корня (помимо 256)? При проверке корня 1,022393 число сходится только до пятого разряда после точки/запятой, далее отличается
@ivangorin1254Ай бұрын
Привет Антон! Я применил функцию Ламберта W(ze^z)=z 2^x=x^32 Извлекаем корень из 32 x=+/- 2^(x/32) a=e^(Lna) x=+/-e^[Ln(2^(x/32))]=+/-e^[(xLn2)/32] xe^[(-xLn2)/32]=+/-1 Домножим обе части на -(Ln2)/32 [(-xLn2)/32]e^[(-xLn2)/32]=+/-(Ln2)/32 Возьмём функцию Ламберта от обеих частей W{[(-x(Ln2)/32]e^[(-xLn2)/32]}= W[+/-(Ln2)/32] -x(Ln2)/32=W[+/-(Ln2)/32] x=-32W[+/-(Ln2)/32]/Ln2 При помощи калькулятора для функции Ламберта находим W[+(Ln2)/32]=0,02120634 Ограничимся точностью в 7 значащих цифр x1=-(0,02120634 Ln2)/32=/0,9790196 W[-(Ln2)/32]=-0,02214590 x2=-(-0,02214590 Ln2)/32=1,02239294 Второе значение W[-(Ln2)/32]=-5,545177 x3=-(-5,545177 Ln2)/32=256 Последний корень можно получить точно. Преобразуем выражение -(Ln2)/32 к виду ze^z -(Ln2)/32=-(2^3Ln2)/2^3*32=-(8Ln2)/2^8=-(8Ln2)/e^(8Ln2)=-(8Ln2)*e^(-8Ln2) W[-(8Ln2)*e^(-8Ln2)]=-8Ln2 x3=-(-8Ln2)*32/Ln2=256
@antonsemenov5155Ай бұрын
@@ivangorin1254 Иван, привет! Благодарю за разъяснение! Теперь понял :)
@jeffersonaraujoelcristiano3 ай бұрын
It's really otherworldly! Fantastic!
@jkr92247 ай бұрын
Those interested in maths will take interest in learning this 🎉🎉🎉🎉🎉🎉 Superb 🎉
@huzurislamda561Ай бұрын
Harika(perfect)👏🏻👏🏻👏🏻
@learncommunolizerАй бұрын
Thank you very much 😊 ☺️ 🙏
@PacoMoyajaquemate8 ай бұрын
El problema tiene 3 soluciones: x= 1.02239, x= -0.97902
@SVC_Editz7 ай бұрын
Also 1.0223
@sudhangshubhattacharya49916 ай бұрын
Very nicely proceeding towards the target
@huseyinaydogan69287 ай бұрын
this answer is imcomplete. there are infinite amount of solutions.(x=256 is not the only one)
@albedogray6 ай бұрын
why infinite?
@TirthParmar-cw4dc5 ай бұрын
No bro only one 256 satisfied this equation
@adrianlautenschlaeger85785 ай бұрын
@@TirthParmar-cw4dc There are infinite complex solutions. Complex numbers are defined by their absolute value and their argument, which is just the angle in the complex plane. And you can add 2πz (z∈Z) to the argument, then you get the same complex number again with a different angle. (2π = 1 full circle) Example: -1 = e^(iπ) = e^(i*(π+2π) = e^(3iπ) = e^(5iπ) = e^(7iπ) = ...
@mikhailhop8484 ай бұрын
6
@payoo_26742 ай бұрын
@@TirthParmar-cw4dc 3 real solutions: x₁ = 1.0223929402057803206527516798494005683768365119132864517728278977... x₂ = 256 x₃ = -0.979016934957784612322582550011650068748090048886011676265377083... and many complex solutions
@julianbruns74597 ай бұрын
Unless x was restricted to integers, i would rate this answer as incomplete. Although there is only 1 integer solution, there are 3 real solutions (and an infinite amount of complex solutions). Did i miss the part where it was specified what set x belongs to?
@noname-ed2un5 ай бұрын
That's why I was thinking of using natural log and the Lambert W function
@MisiTusi3 ай бұрын
She was beautiful❤❤❤❤
@oliverdauphin2368 ай бұрын
Méthode intuitive. On remarque que 2^8=256 et que 8*32=256 Du coup on suppose x=2^8 puis on vérifie : 2^256=(2^8)*32=2^(8*32)=2^256
@maths-1685 ай бұрын
Good excercise.
@ВалентинаКазакова-м3п7 ай бұрын
Интересное задание и его решение!
@hoahocphothongmoi22126 ай бұрын
very good. Thanks you!!!!!!!!
@سمبوساقيمز7 ай бұрын
just use the logarithm equation
@InnocentMsomi-ti4lx3 ай бұрын
It is impossible in this case
@nefando77777 ай бұрын
Me encanta cómo dice "two".
@Rao_adib6 ай бұрын
It was a lengthy solution. Rather it can be solved by taking natural log on both sides
@Eleuthero57 ай бұрын
Wow that was a very entertaining proof!!
@learncommunolizer7 ай бұрын
Thank you very much!
@xgx8997 ай бұрын
It is bad enough that only one solution is found. What is worse, is that uniqueness is not even discussed. Why so many people like to lecture on mathematics without first learning the basics of ``mathematical culture".
@darthmetatron4 ай бұрын
Three guess' I got it. I like to solve things by experience and guesses too.
@darthmetatron4 ай бұрын
Just looked back at the problem and I understand You, there are infinite solutions if you do not have use Integers, they did not specify it so...
@nahuelastor75223 ай бұрын
Make your video. I wanna see your solutions
@Stay_EU_Independence7 ай бұрын
X. 2^x. X^32 0. 1. > 0 1. 2. > 1 2. 4.
@dinlendiricidrtv6 ай бұрын
Because 256
@guilhermenoronha19785 ай бұрын
yeah aprox. 1.022, for that you have to use the lambert function (w). Also another answer would be aprox. -0.979
@OlympiadMentor6 ай бұрын
Tricky Question but you explain very well ❤.
@ozodausmonova185 ай бұрын
It was a lengthy solution but wonderful
@learncommunolizer5 ай бұрын
Your welcome
@richardleveson64678 ай бұрын
Very nice! I wondered where you were going but suddenly you arrived.
@muhammadarshadh6337 ай бұрын
That's what she said
@kanguru_2 ай бұрын
2^x=x^32, so xlog2=32logx, then x/logx=32/log2=2^5/log2=2^6/log(2^2)=2^7/log(2^4)=2^8/log(2^8), so x = 2^8.
@claudebalzano70317 ай бұрын
Cette méthode pose le problème de la bijectivité de la fonction x^(1/x), non ?
@FFATITUITEBOYOFFCIAL7 ай бұрын
Very good solution
@gregsti8 ай бұрын
Très intéressant !
@learncommunolizer7 ай бұрын
Thank you very much!
@VoiceTuned6 ай бұрын
Wow very nice
@AKRiitMedPhysicsGuru6 ай бұрын
Nice bro🎉
@payoo_26742 ай бұрын
Use the Lambert W function W(■*e^■) = ■ 2^x = x^32 ln(2^x) = ln(x^32) x*ln(2) = 32*ln|x| ===> two cases 1st case: x > 0 x*ln(2) = 32*ln(x) ln(x)*x^(-1) = ln(2)/32 ln(x)*e^ln(x^(-1)) = ln(2)/32 ln(x)*e^(-ln(x)) = ln(2)/32 -ln(x)*e^(-ln(x)) = -ln(2)/32 W(-ln(x)*e^(-ln(x))) = W(-ln(2)/32) -ln(x) = W(-ln(2)/32) ln(x) = -W(-ln(2)/32) x = e^(-W(-ln(2)/32)) ===> -1/e < -ln(2)/32 < 0 ===> 2 real solutions x₁ = e^(-W₀(-ln(2)/32)) = 1.0223929402057803206527516798494005683768365119132864517728278977... in WolframAlpha: e^(-productlog(0,-ln(2)/32)) x₂ = e^(-W₋₁(-ln(2)/32)) = 256 in WolframAlpha: e^(-productlog(-1,-ln(2)/32)) 2nd case: x < 0 x*ln(2) = 32*ln(-x) ln(-x)*x^(-1) = ln(2)/32 -ln(-x)*x^(-1) = -ln(2)/32 ln(-x)*(-x)^(-1) = -ln(2)/32 ln(-x)*e^ln((-x)^(-1)) = -ln(2)/32 ln(-x)*e^(-ln(-x)) = -ln(2)/32 -ln(-x)*e^(-ln(-x)) = ln(2)/32 W(-ln(-x)*e^(-ln(-x))) = W(ln(2)/32) -ln(-x) = W(ln(2)/32) ln(-x) = -W(ln(2)/32) -x = e^(-W(ln(2)/32)) x = -e^(-W(ln(2)/32)) ===> ln(2)/32 > 0 ===> 1 real solution x₃ = -e^(-W₀(ln(2)/32)) = -0.979016934957784612322582550011650068748090048886011676265377083... in WolframAlpha: -e^(-productlog(0,ln(2)/32))
The process is good for written tests but it's too long for compitive exams.
@knotwilg35964 ай бұрын
You spend an enormous amount of time finding the integer solution, while you fail to discuss the non-integer solutions (or complex solutions). Math is not just endless steps of algebra to arrive at prior knowledge. Math is about elegance in finding the solution and about rigor in figuring out if there are more solutions (depending on the solution space, which you need to define first).
@BrianDroid-g2d8 ай бұрын
What is the 3rd solution? It must be a small negative number
@allozovsky8 ай бұрын
Yeah, it's a solution to (1/2)⁻ˣ = (−x)³²
@alejomdp7 ай бұрын
Approximately -0.979.
@allozovsky7 ай бұрын
@@alejomdp How did you get it? Numerically or evaluated via some tool?
@guilhermenoronha19785 ай бұрын
@@allozovsky wolfram alpha, it's a calculator
@nahideipekcioglu75527 ай бұрын
Çözüm cok uzun malesef.🤷♀️ 2 nin kuvvetlerini dene, ×=2⁸=256 sağlıyor.
We have a^2=2^2 leading to 2 solutions which are -2 and 2. What make you believe that the fact we have a^(1/a)=x^(1/x) gives a unique solution a=x??
@Mralipol6 ай бұрын
Bir ile iki arasında bir x daha olsa gerek onunda bulabilir misiniz?
@Austin1011237 ай бұрын
This needs lambert W function to find 3 real solutions (infinite complex ones).
@Bishirii-fu9wf2 ай бұрын
Thonk you ❤❤❤❤❤
@himadrikhanra74637 ай бұрын
(1)^x/32=2^32 ×x...so x= 1/2^32....
@pujarian7 ай бұрын
Just take log both sides
@TediTeda4 ай бұрын
Hello dear I am from Ethiopia and I don't understand logarithm so do u know any good channel to help me
@VolodymyrBoykaАй бұрын
Log without calculator is not possible in math Olympiad that's where IQ comes in
@ronaldnoll32475 ай бұрын
excellent
@learncommunolizer5 ай бұрын
Thank you! Cheers!
@totalhereАй бұрын
Wow Chat GPT can not answer. but you can.
@evabeyza7 ай бұрын
Güzel yöntemmiş ama çok uğraştıcı
@TumeloPercy-z3s3 ай бұрын
Can the Lambert W-Function help us to find the solution to this equation?
@DacadYare-k2t7 ай бұрын
Thanks
@N0B0DY_SP3C14LАй бұрын
Whoa hold up. 2*1/32= 2/32 or 1/16. When multiplying a fraction by an integer, the divisor stays the same or simplifies. You are only performing the multiplication on the numerator. 1/16=1/x. X=16. Why make this more difficult?
@永辉万-i3n5 ай бұрын
are u from India?
@Phạm_Quang_Minh1002 ай бұрын
Tôi thấy phương pháp logarit là ngắn gọn, và thuyết phục nhất
@namantiwari45297 ай бұрын
Finnally bro did it
@sureshgattu92436 ай бұрын
You can solve using the concept of logarithms
@liquidzliquidz35575 ай бұрын
How I try to solve
@SouvereineMaman8 ай бұрын
Not Bad like methode
@learncommunolizer8 ай бұрын
Thank you very much!!!
@Joe-b4c7n8 ай бұрын
Hola cómo estás todo ustedes bueno día desde san Felipe de Puerto plata primera espalda de la restauración general Gregorio luperon machete carajo 🇩🇴⚔️☕
@darthmetatron4 ай бұрын
It is just a binary number problem. ((32)^2)/(2^2) = 256
@nirmalyadatta35234 ай бұрын
👍🙏
@darthmetatron4 ай бұрын
looks like a binary problem, x guesses would be 1, 2, 8, 16, 32.....256! No algeabras here!
@Agegnehu-du8fs7 ай бұрын
It's so complicated way to solve 😢
@MisiTusi3 ай бұрын
She is a beautiful ❤❤❤❤
@davidcliftongm85657 ай бұрын
X=0 ?? If 0^x=1 or is that for 0!
@alfredteichmann1357 ай бұрын
Take two sheets of paper!
@mastanvali2554 ай бұрын
By applying logarithm, (Logx/Log3) = x/9. Next step??
@worldorthoorthopaedicsurge61472 ай бұрын
At 71, x is 2 or -2
@kennycovenas35986 ай бұрын
Muy complejo el procedimiento
@rslua017 ай бұрын
Ty
@edfess5424Ай бұрын
the answer is 32x32=1024 2x2=4 1024/4=256
@АндрейЛюбавин-э4щ8 ай бұрын
256
@KyriZee8 ай бұрын
there is a faster and more accurate way: x > 0, obvious x cannot be non integer rational number because then LHS = irrational and RHS = rational. So, x > 1 and x is a natural number. Let x be 2 to the power of k. k > 0. So, 2 to the k = 32k. So, 2 to the (k-5) = k. Obvious solution: k = 8, so x = 256. Draw graphs for y = k and y = 2 to the (k-5). For k>8 they cannot meet again (show with differentiation). For 1
@allozovsky7 ай бұрын
@@KyriZee > x > 0, obvious Why is it obvious? Both 2ˣ and x³² are defined for all x ∈ ℝ. > x cannot be non integer rational number But it can be irrational. > I have no idea how to solve for irrational. Using the Lambert W function, obviously. But the solution for an integer x is indeed accurate and neat.
@ivangorin1254Ай бұрын
Я применил функцию Ламберта W(ze^z)=z 2^x=x^32 Извлекаем корень из 32 x=+/- 2^(x/32) a=e^(Lna) x=+/-e^[Ln(2^(x/32))]=+/-e^[(xLn2)/32] xe^[(-xLn2)/32]=+/-1 Домножим обе части на -(Ln2)/32 [(-xLn2)/32]e^[(-xLn2)/32]=+/-(Ln2)/32 Возьмём функцию Ламберта от обеих частей W{[(-x(Ln2)/32]e^[(-xLn2)/32]}= W[+/-(Ln2)/32] -x(Ln2)/32=W[+/-(Ln2)/32] x=-32W[+/-(Ln2)/32]/Ln2 При помощи калькулятора для функции Ламберта находим W[+(Ln2)/32]=0,02120634 Ограничимся точностью в 7 значащих цифр x1=-(0,02120634 Ln2)/32=/0,9790196 W[-(Ln2)/32]=-0,02214590 x2=-(-0,02214590 Ln2)/32=1,02239294 Второе значение W[-(Ln2)/32]=-5,545177 x3=-(-5,545177 Ln2)/32=256 Последний корень можно получить точно. Преобразуем выражение -(Ln2)/32 к виду ze^z -(Ln2)/32=-(2^3Ln2)/2^3*32=-(8Ln2)/2^8=-(8Ln2)/e^(8Ln2)=-(8Ln2)*e^(-8Ln2) W[-(8Ln2)*e^(-8Ln2)]=-8Ln2 x3=-(-8Ln2)*32/Ln2=256
@vishnujatav63296 ай бұрын
Tricky
@anderplayerk42227 ай бұрын
x = 0 😎
@sevincsultanova76494 ай бұрын
👍
@learncommunolizer4 ай бұрын
👍👍👍
@miracbarsapaydn6508 ай бұрын
X = 256
@AshetuNegasa4 ай бұрын
But at the end of your working; it doesn't make sense ;how took it( 256 the power of 1over 256 is equal x 1 over x ) how you equated But i appreciate you wow.... Can you say sth on that , what i said
@ЕленаЛиненко-к7у4 ай бұрын
Это не решение, а подбор только одного из трех корней. Количество трех корней можно увидеть графически.