Polynome und Polynomring | Math Intuition

  Рет қаралды 55,553

Math Intuition

Math Intuition

Күн бұрын

Пікірлер: 46
@dasura9147
@dasura9147 Жыл бұрын
Sie sind einfach the G.O.A.T. Greatest Of All Time Danke für das Video :)
@c0m932
@c0m932 Жыл бұрын
Du bist mein Held. Bist mir ne große Hilfe beim Mathestudium!!!
@eternalapprentice903
@eternalapprentice903 2 жыл бұрын
Ausgezeichnet erklärt. Vielen Dank Markus!
@florentina2756
@florentina2756 6 жыл бұрын
Dankeschön! Das Video hat mir sehr geholfen. 😊
@Sarah-pu8un
@Sarah-pu8un Жыл бұрын
Sehr hilfreich. Danke!
@TheSchranzeule
@TheSchranzeule 8 жыл бұрын
Ist in K=Z/3Z auch x^4=x^1 oder gilt der Körper nur für die Koeffizienten? Genauso könnte man sich fragen, ob x^pi Element von R[x] ist
@mathintuition
@mathintuition 8 жыл бұрын
Heyho, gute Frage! Nein! Das Modulo rechnen bezieht sich immer nur auf die koeffizienten, niemals auf die exponenten. Und Elemente in einem Polynomring haben immer nur Terme, in den die Exponenten von x natürliche Zahlen sind, d.h. x^2 oder x^100 sind ok, aber x hoch "irgendwas krummes" nicht mehr. Jedoch gibt es in den reellen Zahlen ja durchaus Ausdrücke wie 2 hoch 4/5, nämlich die fünfte Wurzel aus 2 hoch 4. Aber das ist etwas ganz anderes ;)
@TheSchranzeule
@TheSchranzeule 8 жыл бұрын
Alles klar und danke dir für die prompte und ausführliche Antwort!
@sherinhasso1944
@sherinhasso1944 6 ай бұрын
You are the best 👏🏻
@haferflocke6120
@haferflocke6120 4 жыл бұрын
Danke danke danke!
@TheAdorfer
@TheAdorfer 3 жыл бұрын
Danke Markus :)
@mathintuition
@mathintuition 3 жыл бұрын
Gern! Noch mehr übrigens auf math-intuition.de
@mirim1683
@mirim1683 9 жыл бұрын
Ich hätte mal ne Frage, die Menge N ist dann kein Polynomring, weil ich keine Subrtraktion durchführen kann, also weil mir die Inversen fehlen?
@mathintuition
@mathintuition 9 жыл бұрын
+Miri m Ja, ganz genau! Die natürlichen Zahlen N sind kein Polynomring (dieser würde ja auch eine Unbekannte X oder ähnliches benötigen), und auch kein Ring. Sie sind noch nicht einmal eine Gruppe bzgl. +, da (wie du schon sagst) die Inversen bzgl. + fehlen. Stattdessen bilden die natürlichen Zahlen bzgl. + nur eine Halbgruppe. Wenn ich noch die Null dazunehme, wird daraus ein sogenannter "Monoid", da es ein neutrales Element bzgl + (nämlich die Null) gibt. Das als kleiner Exkurs, der bestimmt mehr Fragen aufwirft, als er löst ;)
@juliandeich4052
@juliandeich4052 8 жыл бұрын
Hallo. Was wäre ein Beispiel für einen Restklassenkörper von F_4[X] mit 16 Elementen?
@LinkEX
@LinkEX 10 жыл бұрын
9:52 Moment, wenn du sagst, dass Brüche wie 1/2 etc nichtmehr drin sind, dann dürftest du doch auch nicht sagen, dass Zahlen wie 4, 7, oder -2 in diesem Ring sind, oder? Denn nicht nur diese Zahlen befinden sich in der gleichen Restklasse wie 1, sondern auch 1/4, 1/7, und -1/2. Denn dies sind die inversen Elemente zu 1 (bzw 4, 7, und -2), denn beispielsweise 4 * (1/4) = 4* (4^-1) = 1. Ebenso ist in Z/3Z auch 2 zu sich selbst invers (2 * 2 = 4 = 1), und damit gilt in dem Ring 2 = 5 = 8 = -1 = 1/2 = 1/5 = 1/8 etc.
@mathintuition
@mathintuition 9 жыл бұрын
Guter Punkt! Letztendlich ist es eine reine Frage nach der Konvention, ob man das Inverse eines Elements g nur als g^(-1) schreiben darf, oder ob man auch die Schreibweise 1/g zulässt. Im Video habe ich diese Schreibweisen klar unterschieden, deshalb habe ich gesagt, dass 1/2 kein Element (rein formal als Symbol) von Z/3Z ist. Doch natürlich gibt es in Z/3Z ein Element, welches genau diesselbe Eigenschaft hat, wie das Element, dass man sich unter "1/2" vorstellt. Nämlich das Element 2. Denn 2*2 = 4 = 1 in Z/3Z. Also ist 2 gleichzeitig sein eigenes Inverses. Man könnte daher auch per Konvention sagen, dass 1/2 ein Element von Z/3Z ist. Man muss nur wissen, dass damit eine reine Symbolik gemeint ist, die das Element beschreibt, das ein Inverses zu der Zahl 2 ist. Im Video habe ich aber wiegesagt zwischen beiden Symbolen unterschieden, was für den Anfang bestimmt nicht verkehrt ist. Wenn man das dann verstanden hat, kann man den Schritt weiter gehen, wie du es getan hast ;)
@ferfissimo
@ferfissimo 8 жыл бұрын
Ist die Multiplikation in einem Polynomring nicht durch die Faltung definiert? Also z.b. über Z2 (x+1) * (x^2) = (1 * 0) + (1 * 0 + 1 * 0) x + (1 * 1 + 1 * 0 + 0 * 0) x^2 = x^2 Nachdem Video wäre es ja (x+1)*(x^2) = x^3 + x^2 Oder sehe ich das falsch?
@ferfissimo
@ferfissimo 8 жыл бұрын
Hm glaube ich hatte es falsch verstanden man muss es ja weiter ausführen also noch +(1*0+1*1+0*0+0*0)x^3 also ist beides gleich ^^
@LpNecromancer
@LpNecromancer 6 жыл бұрын
Hallöchen, ich habe eine Frage bezüglich der inversen Elemente. Besitzen alles polynomringe multiplikative Inversen? Oder nur die, die über Körper gebildet werden? Oder in kurz gelten die selben Grupoeneigenschaften der Addition und Multiplikation auch bei dem gebildeten polynomring?
@mathintuition
@mathintuition 6 жыл бұрын
In einem Polynomring, der über einem Körper gebildet ist, d.h. K[x], gilt, dass nur die Einheiten invertierbar sind. Bei K[x] sind das genau die konstanten Polynome(vom Grad Null) außer dem Nullpolynom. Der Grund dafür ist ganz schnell nachzuvollziehen: Nimm ein Polynom f mit einem Grad größer oder gleich 1. Wenn du nun ein anderes Polynom dranmultiplizierst, dann kommt wieder ein Polynom mit Grad größer oder gleich 1 heraus. Damit f jedoch eine Einheit ist, müsste es ein Polynom geben, sodass das konstante Polynom 1, welches den Grad Null hat(!), herauskomm. In diese Argumentation ging ein, dass K keine Nullteiler hat, weil es ein Körper ist, sowie die Gradformel in K[x]. Bei einem Polynomring über einem Ring, d.h. R[x] ist es wegen der potentiellen Nullteiler etwas anders.
@T1T0R3
@T1T0R3 9 жыл бұрын
schönes Video!
@MikeyBarca02
@MikeyBarca02 2 жыл бұрын
Meine frage ist, wird bei der Schreibweise Z/pZ wirklich an irgendeiner Stelle geteilt oder weshalb drückt man das als einen Quotienten aus?
@mathintuition
@mathintuition 2 жыл бұрын
Der Übergang von den ganzen Zahlen Z in den Ring Z/nZ ist ja ein "in n Teile teilen", was vorher unendlich war. Außerdem entsteht der Ring Z/nZ außerdem durch "Teilung mit Rest": Teile z.B. 7 durch 3 mit Rest, dann ergibt sich Rest 1, also ist in Z/3Z die 7 und 1 identisch (auch 1 durch 3 ergibt Rest 1).
@MikeyBarca02
@MikeyBarca02 2 жыл бұрын
@@mathintuition Ah jz verstehe ich es vielen Dank!
@Tipsi-mo7bl
@Tipsi-mo7bl 7 жыл бұрын
Ist der enstehende Polynomring immer genau dann ein ein Körper bzw. Ring, wenn die zugrundeliegende Menge ein Körper bzw. Ring ist? Also gilt etwa "F_3[x] ist Körper, weil F_3 Körper ist" und "F_4[x] ist kein Körper, weil F_4 kein Körper ist"?
@mathintuition
@mathintuition 7 жыл бұрын
Tipsi 2014 gute frage! Könnte man meinen, aber leider ganz und gar nicht: Grundsätzlich ist A[X] immer erstmal nur ein ring, egal ob A ein ring oder sogar ein körper (=ein spezieller ring, in dem jedes element außer der null ein multiplikatives inverses haben muss). Wenn man aber übergeht zu Brüchen von Polynomen, dann schreibt man runde Klammern, also A(X), und das ist wiederum ein körper! So wie auch Q ein körper ist, aber Z nicht. Denn Q entsteht aus Z wenn man zu Brüchen übergeht. Auch wenn das erstmal nichts mit polynomen zu tun hat.
@Tipsi-mo7bl
@Tipsi-mo7bl 7 жыл бұрын
Hallo Math Intuition, danke für deine schnelle Antwort! Es gibt doch auch Körper ohne Übergang zu Brüchen? Z/3Z ist ja auch ein Körper? Ich bin eigentlich auf die Frage gekommen, weil mich interessieren würde, ob Z/3Z[x] (=F_3[x], nur andere Notation?) ein Körper ist? Zum Beispiel ist mir bekannt, dass für das Ideal (x^2+1) der Ring Z/3Z[x]/(x^2+1) ein Körper mit 9 Elementen ist, weil dieser Ring nullteilerfrei ist und für jedes Element ein Inverses existiert. Bei Z/3Z[x] tue ich mir aber schwerer, weil da ja abzählbar unendlich viele Elemente drin sind? Ich glaube, aus einem anderen Video von dir ist hervorgegangen, dass A(x) der Quotientenkörper von A[x] ist, ist das richtig?
@tomriddle.2025
@tomriddle.2025 5 жыл бұрын
Gutes Video, grüße!
@baumwolle1981
@baumwolle1981 4 жыл бұрын
Kann man auch einen Polynom Ring erweitern? Sowas wie: ((R[X])[X],+,·)?
@mathintuition
@mathintuition 4 жыл бұрын
Uwe Gößner na klar! Du nutzt dann halt unterschiedliche Symbole, z.B. R[X,Y] oder R[X_1, X_2]. Die Idee lässt sich beliebig weiterspielen.
@jakobberz6151
@jakobberz6151 7 жыл бұрын
wieso kann ich bei bei einem Körper auf keine Nullteiler stoßen ?
@mathintuition
@mathintuition 7 жыл бұрын
In jedem Körper gilt immer, dass aus a*b = 0 folgt, dass schon a oder b gleich Null gewesen sein muss. Das liegt daran, weil jedes Körperelement (außer Null selbst) einen "Partner" a^(-1) hat, sodass a * a^(-1) = 1 ist. Anders gesagt: In einem Körper ist jedes Element außer Null eine Einheit. Und man kann schnell beweisen, dass Einheiten niemals Nullteiler sind.
@jakobberz6151
@jakobberz6151 7 жыл бұрын
vielen dank :)
@dellokrd9916
@dellokrd9916 2 жыл бұрын
Ich liebe dich Markus
@mathintuition
@mathintuition 2 жыл бұрын
Merci ;)
@manfredvonrichtofen3863
@manfredvonrichtofen3863 Жыл бұрын
Ich wüsste nicht wie man LA ohne dich überstehen sollte
@theRealMibs
@theRealMibs 3 жыл бұрын
Du bist mein Markus!?!
@evatoussaint8831
@evatoussaint8831 6 жыл бұрын
Hey :) Deine Videos sind echt super, und helfen mir sehr weiter. Was toll wäre, ist wenn eventuell die Maus ( also das Kreuz ) nur beim wirklichen zeigen auftreten würde. Da das Hin- und Her-Gewackel leider die Konzentration auf den wirklich toll erklärten Stoff erschwert :)
@mathintuition
@mathintuition 6 жыл бұрын
Danke für den Hinweis!
@JoSh-yu6jt
@JoSh-yu6jt 4 жыл бұрын
Jeder ist anders. Mich stört das "Gewackel" 0.
@katharinabergen6831
@katharinabergen6831 4 жыл бұрын
Kongruent, nicht identisch :) denke ich
@socialreveluv5428
@socialreveluv5428 2 жыл бұрын
Das Thema ist so schlimm und die Hausaufgaben werden immer schlimmer x.x
@mathintuition
@mathintuition 2 жыл бұрын
Wie kann ich helfen?
@socialreveluv5428
@socialreveluv5428 2 жыл бұрын
@@mathintuition Bin auf jeden Fall geehrt, dass du fragst, da mir deine Videos schon immer geholfen haben :) Die aktuellen Themen beziehen sich auf Faktorringe, Ideal, Polynome R[x] und Ringhomomorphismen, was eben alles dazugehört und viele Aufgaben erfordern ein sehr gutes Verständnis dieser Begriffe, bzw. übergreifendes Wissen, wie man diese Begrifflichkeiten in Aufgaben nutzen kann, um Probleme auf ein kleineres runterzubrechen. Das klingt schon so vage wie das Thema an sich, aber genauer kann ich es leider nicht definieren. Und hier noch private Sachen, die es mir sehr schwer machen: @Math Intuition Ich denke der Kontakt mit anderen Studenten im Bezug auf Diskussion kommt viel zu kurz, jedoch finde ich niemanden Online, der sich über solche Themen unterhalten möchte. Meine Übungspartner haben alle abgebrochen, also ist der Kontakt auch schwierig. Die Inhalte werden vom Dozenten viel zu schnell erklärt und manchmal lässt er Sachen aus, weil wir keine Zeit dafür haben, können soll man es trotzdem und das ist ja nur eins meiner vier Module dieses Semester, wodurch die anderen dann viel zu kurz kommen. Helfen kannst du mir vermutlich nicht, da man sich mit dem Stoff selbst beschäftigen muss und jede Vorlesung neue Inhalte kommen, die den Rahmen des Erklärens sprengen würden.
@mathintuition
@mathintuition 2 жыл бұрын
@@socialreveluv5428 Vieles davon behandle ich in meinem Algebra 1 Kurs (nicht lineare algebra), schau mal vorbei: www.math-intuition.de/course/algebra-1-intuition
Irreduzible Polynome (Teil 1/2) | Math Intuition
9:33
Math Intuition
Рет қаралды 46 М.
Die Ordnung in einer Gruppe | Math Intuition
12:18
Math Intuition
Рет қаралды 43 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 47 МЛН
Правильный подход к детям
00:18
Beatrise
Рет қаралды 10 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Was ist ein Normalteiler? (Idee, Nutzen, Beispiele) | Math Intuition
12:22
Minimalpolynom berechnen (Algorithmus) | Math Intuition
23:00
Math Intuition
Рет қаралды 41 М.
Äquivalenzrelationen und Äquivalenzklassen | Simplexity
13:24
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 210 М.
Minimalpolynom intuitiv erklärt | Math Intuition
18:27
Math Intuition
Рет қаралды 33 М.
Was sind ganzrationale Funktionen (Polynomfunktionen)?
8:46
Mathehoch13
Рет қаралды 30 М.
Was ist eine Körpererweiterung? | Math Intuition
12:25
Math Intuition
Рет қаралды 20 М.
Zerstörung der Mathematik
12:57
Mathegym
Рет қаралды 71 М.
Was ist eine Relation? (intuitive Erklärung) | Math Intuition
13:47
Math Intuition
Рет қаралды 50 М.
Quotientenraum (Bilder, Vorstellung, Beispiel) | Math Intuition
10:05
Math Intuition
Рет қаралды 60 М.
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 47 МЛН