Универсальный способ решения симметрических систем с тремя неизвестными

  Рет қаралды 73,700

Valery Volkov

Valery Volkov

Күн бұрын

Пікірлер: 140
@wozzeck8831
@wozzeck8831 4 жыл бұрын
Сразу глаз видит, что в ответе 1 и 0, в различных комбинациях)))
@ВикторИванов-ю7ю
@ВикторИванов-ю7ю 4 жыл бұрын
Каким образом?
@wozzeck8831
@wozzeck8831 4 жыл бұрын
@@ВикторИванов-ю7ю уже столько перерешано, столько уравнений повидал. Да и методом подбора тут несложно. По системе видно, что корни - целые числа.
@ВикторИванов-ю7ю
@ВикторИванов-ю7ю 4 жыл бұрын
@@wozzeck8831 Понятно. Уж не буду спрашивать каким образом "По системе видно, что корни - целые числа".
@МатвейКуликов-э5ч
@МатвейКуликов-э5ч 4 жыл бұрын
@@ВикторИванов-ю7ю ну это очевидно, едрен батон, не стоит усложнять себе жизнь, когда можно сделать все проще. Были бы там не единицы, да, стоило бы подумать. А когда все так на поверхности...
@ahapxocounajlnct8086
@ahapxocounajlnct8086 4 жыл бұрын
Да, правда, это как-то интуитивно понятно)
@СергейПетров-п9в
@СергейПетров-п9в 4 жыл бұрын
Достаточно было получить тройку (1,0,0) и, учитываю симметрию относительно любых перестановок x,y,z в симметрической системе уравнений, получить остальные два решения (0,1,0) и (0,0,1).
@МаксимЕвтишкин-н5с
@МаксимЕвтишкин-н5с Жыл бұрын
А где доказательство, что это единственные тройки решений?
@БогданЛукеча-в4й
@БогданЛукеча-в4й 4 жыл бұрын
Система замен это теорема Виета для кубического уравнения)
@eduardionovich4425
@eduardionovich4425 3 жыл бұрын
Верно: так и нужно решать!
@ОльгаАнисимова-н9й
@ОльгаАнисимова-н9й 3 жыл бұрын
Спасибо вам от имени всех школьников, особенно дистанционников.
@LordBogdan102
@LordBogdan102 4 жыл бұрын
В целом, после того, как мы получили систему, в которой найдены xy+yz+zx и xyz, можно рассмотреть кубическое уравнение t^3+pt^2+qt+r=0 с корнями x,y,z, где p=-(x+y+z), q=xy+yz+xz, r=-xyz и после этого получить уравнение t^3-t^2=0, откуда t=0 или t=1, ну а дальше в ответ записываем все комбинации из чисел 0 и 1. В конкретном примере, конечно, все проще, так как xyz=0
@rejeporazmetow3930
@rejeporazmetow3930 4 жыл бұрын
Спасибо большое Учитель.классная система и её решение.
@AlexeyEvpalov
@AlexeyEvpalov Жыл бұрын
Стандартная замена для трёх переменных. Спасибо за решение.
@АлексейГолозубов-ы3р
@АлексейГолозубов-ы3р 4 жыл бұрын
Весьма интересно. Спасибо.
@s1ng23m4n
@s1ng23m4n 4 жыл бұрын
Я ее решал уже, так что написал комментарий до того, как посмотрел) Но лайк поставить не забыл)
@АндрейА-ш6ц
@АндрейА-ш6ц 4 жыл бұрын
Долгое доказательство очевидного решения
@sharofddinnuriddinov6824
@sharofddinnuriddinov6824 3 жыл бұрын
Olloh sizdan rozi bo'lsin Valeriy aka
@HelloWorld-rl2jz
@HelloWorld-rl2jz 4 жыл бұрын
можно увидеть корни с двумя нулями и единицей и доказать, что других решений не существует: числа все положительные, так как если допустить обратное, уравнение с квадратами каждого числа никак не может одновременно выполняться с уравнениями с кубами или без степеней. ясно также и то, что каждое из чисел не больше единицы (опять таки из уравнения с квадратами). тогда выходит, что корни, при которых x + y + z =1 никак не могут подойти к x^3 + y^3 + z^3 = 1, если x,y,z принадлежит (0;1), так как куб каждый из этих корней просто уменьшит. получается, что единственное возможное решение - комбинация двух нулей и единицы.
@mikaelhakobyan9363
@mikaelhakobyan9363 4 жыл бұрын
Еще как могут одновременно выполняться уравнение с квадратами и с кубами ИЛИ без степеней при отрицателных переменных. Например для первых двух уравнений существует бесконечное кол-во отрицательных корней: (0.55 - 0.05√77; 0.55 + 0.05√77; -0.1) для примера.
@santashmyakus8516
@santashmyakus8516 Жыл бұрын
Добавить надо, что числа не только из [-1;1], но и не меньше нуля.
@beaver163
@beaver163 4 жыл бұрын
Грамотное решение. Автор молодец, однозначно лайк👍
@АлександрИванов-ф1э3я
@АлександрИванов-ф1э3я 4 жыл бұрын
Как всегда великолепно. Спасибо
@syberrus
@syberrus 3 жыл бұрын
Валерий, я понимаю, что у вас очень подробные объяснения, чтобы даже двоишники отдуплили) Но в данном примере, имхо, система уравнений, к которой приходим в конце, очевидна прямо с самого начала без ручки и бумаги и замен переменных. Т.к. квадрат суммы равен сумме квадратов по условию ( (x+y+z)^2 = x^2 + y^2 + z^2, т.к. они равны 1), то из этого следует, что то, на что они отличаются 2(xy + yz + zx) равно 0. Аналогично принимая это во внимание и что куб суммы равен сумме кубов по условию (может чуть сильнее поразмыслив) следует xyz=0. Ну может последнее утверждение многим потребует просто раскрыть куб суммы чтобы понять, но замены переменных не требуются)
@АсратХушназаров-й2и
@АсратХушназаров-й2и 4 жыл бұрын
Очень понятно ,но после урока дай задачку или несколько задач для польного усвоения таких задач.Мой любимый канал.
@ЛЮДМИЛАГРОМАКОВА-г1я
@ЛЮДМИЛАГРОМАКОВА-г1я 3 жыл бұрын
Спасибо. Этот способ помог решить сегодня систему, которую коллега прислала
@kirillpolyakov8149
@kirillpolyakov8149 4 жыл бұрын
Нужно доказать что ответ это не иррациональные числа и не дроби, дальше подбирам целые положительные и нули
@РайханШерубаева-й8т
@РайханШерубаева-й8т 4 жыл бұрын
Спасибо!
@azercellezercel6882
@azercellezercel6882 3 жыл бұрын
Просто и понятно.
@ЯнинаГеннадьевна
@ЯнинаГеннадьевна 3 жыл бұрын
Отлично!🌺
@s1ng23m4n
@s1ng23m4n 4 жыл бұрын
Когда я был студентом, то поспорил с преподавателем. Я сказал, что смогу найти общее решение подобных систем только не ограничиваясь количеством уравнений в системе) Если кто-то изучал комбинаторику, то вот вам задача)
@s1ng23m4n
@s1ng23m4n 4 жыл бұрын
@@ruiiiiner Мое решение сводилось к одному уравнению n-ой степени, а если степень больше 4, то точный ответ мы найти не можем) Т. е. я проиграл) Но преподаватель мне 5 поставил за семестр)
@s1ng23m4n
@s1ng23m4n 4 жыл бұрын
@@ruiiiiner на 1
@mikemichaelism
@mikemichaelism 4 жыл бұрын
Решил в уме за 5 - 10 с, как только увидел. Но очень понравились подстановки. Спасибо!
@ЯнинаГеннадьевна
@ЯнинаГеннадьевна 4 жыл бұрын
Спасибо!🌺
@ІванФедак-й9ъ
@ІванФедак-й9ъ 2 жыл бұрын
На множині дійсних чисел в українських школах цю задачу розв'язують усно, навіть без першого рівняння. З другого рівняння випливає, що у ньому всі доданки зліва не перевищують 1. Але тоді доданки третього рівняння не більші відповідних доданків другого. Але їх сума також 1, то вони рівні відповідним доданкам другого рівняння, що можливо лише за умови, що вони дорівнюють або 1, або 0. Зрозуміло що 1 має бути один раз, а 0 - двічі. Перше рівняння такий набір також задовольняє. Подібні міркування пройдуть і для аналогічних систем з більшою кількістю рівнянь та невідомих і сумами вищих степенів. А от, чи Волков справився би з ними своїм способом я не впевнений, хоч і знаю, як методом симетричних многочленів це зробити.
@МиколаДзядук
@МиколаДзядук 2 жыл бұрын
Попробуйте решить систему: X + y. + z. = 1 X*3+y*3+z*3=1 x*5+y*5+z*5=1 Это несколько сложнее, но гораздо интересней. Те же самые симметричные полиномы. Ответ: x=2cos(Пи/7), y=2cos(3Пи/7), z=2cos(5Пи/7).
@tolich3
@tolich3 2 жыл бұрын
Первое уравнение описывает плоскость, проходящую через точки A(1,0,0), B (0,1,0) и C(0,0,1). Второе - сферу радиуса 1 с центром в начале координат. Эта сфера пересекает плоскость по окружности, проходящей через те же точки ABC. Как выглядит третья фигура, представляю не очень, но скорее всего, точки A, B, C единственные общие с плоскостью и сферой.
@superartmebli2452
@superartmebli2452 3 жыл бұрын
Класс!
@alextitov-
@alextitov- 4 жыл бұрын
Решил почти так же, но третье уравнение преобразовал иным способом. Путём непосредственного раскрытия скобок: (x + y + z)³ = x³ + y³ + z³ + 3x²y + 3xy² + 3y²z + 3yz² + 3x²z + 3xz² + 6xyz. Перегруппируем это таким образом: (x + y + z)³ = x³ + y³ + z³ + 3x²y + 3xy² + 3xyz + 3y²z + 3yz² + 3xyz + 3x²z + 3xz² + 3xyz - 3xyz Вынесем там где можно утроенные попарные произведения за скобки: (x + y + z)³ = x³ + y³ + z³ + 3xy(x + y + z) + 3yz(x + y + z) + 3xz(x + y + z) - 3xyz = = x³ + y³ + z³ + 3(x + y + z)(xy + yz + xz) - 3xyz. С учётом подстановок получаем: u³ = 1 + 3uv - 3w После определения u, v и w удобно рассмотреть кубическое уравнение: t³ - ut² + vt - w = 0. Его корнями будут x, y, z, взятые во всевозможных перестановках.
@ВасильМигович-ш5п
@ВасильМигович-ш5п 4 жыл бұрын
Вы покажите общий способ представления любого симметрического многочлена с помощью элементарных симметрических многочленов, полезно будет.
@ВасильМигович-ш5п
@ВасильМигович-ш5п 4 жыл бұрын
В данном случае, если обозначить u=x+y+z, v=xy+xz+yz, w=xyz, то x³+y³+z³=u³+auv+bw. При x=y=z=1 получим: u=3, v=3, w=1, 27+9a+b=3, 9a+b=-24. При x=y=1, z=0 получим: u=2, v=1, w=0, 8+2a=2, a=-3. Тогда b=-24-9*(-3)=3. Поэтому x³+y³+z³=u³-3uv+3w.
@novakalexx
@novakalexx 3 жыл бұрын
Интересно как выглядит решение такой системы графически?
@jystinian1926
@jystinian1926 4 жыл бұрын
Ну, я сделал точно такие же замены. Правда кубы выразил через куб трехчлена, откуда получается ещё более простое уравнение после замены uv-w=0. Ну и после обратной замены можно не рассматривать три случая xyz=0, а из равенства u=w=0 получить xy+yz+zx=xyz, которое легко раскладывается на множители, xy+yz+zx-xyz=x(y+z)+yz-xyz=x(1-x)+yz(1-x)=(1-x)(x+yz)=0, так как y+z=1-x из первого уравнения системы. И здесь уже достаточно рассмотреть два случая, а не три, когда x=1 и x=yz. Если x=1, то y+z=yz=0, откуда y=-z, -z^2=0 => y=0, z=0. Если x=-yz, то xyz=-x^2=0 => x=0 => yz=0. x+y+z-1=y+z-1-yz=(1-z)(y-1)=0, откуда либо z=1, либо y=1. Зная, что yz=0, то либо y=0, z=1, либо y=1, z=0. Суммируя всё вышесказанное, получаем три ответа: (1,0,0), (0,1,0), (0,0,1).
@bannikovn8814
@bannikovn8814 4 жыл бұрын
Плохо, что логику по сути, школьник постигает на курсах математики и она не идёт самостоятельным предметом. Зато школьная программа забита самим ненужным мусором.
@РамзанЭльдаров
@РамзанЭльдаров 4 жыл бұрын
И где Вы находите?! Красиво!
@ДаніілШевченко-и9у
@ДаніілШевченко-и9у 4 жыл бұрын
Красиво
@ІванФедак-й9ъ
@ІванФедак-й9ъ 2 жыл бұрын
На множині дійсних чисел цю задачу розв'язують усно, навіть без першого рівняння. З другого рівняння випливає, що у ньому всі доданки зліва не перевищують 1. Але тоді доданки третього рівняння не більші відповідних доданків другого. Але їх сума також 1, то вони рівні відповідним доданкам другого рівняння, що можливо лише за умови, що вони дорівнюють або 1, або 0. Зрозуміло що 1 має бути один раз, а 0 - двічі. Перше рівняння такий набір також задовольняє.
@Evgeny-Kasintsev
@Evgeny-Kasintsev 3 жыл бұрын
Можно вообще не решать, а доказать, что нет решений, кроме тривиальных.Легко показать, что если три числа из системы ненулевые, то два из них положительные, а третье отрицательное. Теперь вычтем из третьего уравнения второе и придём к противоречию с условием.
@ОксанаКубан-о3э
@ОксанаКубан-о3э Жыл бұрын
ДЯКУЮ
@maksimukropien5545
@maksimukropien5545 4 жыл бұрын
Так как система симметрическая то, наверное, достаточно найти только одно решение, а два остальных следует автоматически?
@ЕвгенийПопов-х8е
@ЕвгенийПопов-х8е 3 жыл бұрын
Спасибо. Решил примерно так же, но ваши подстановки сокращают вычисления. А это много - меньше шансов описаться.
@ojekkringevideo7249
@ojekkringevideo7249 2 жыл бұрын
Я одно не понял. Почему переменные x, y, z могут быть одинаковыми? В других видео вы говорите, что раз переменные разные, то и их значения разные. Почему здесь не так?
@Артьомдругартем
@Артьомдругартем 4 жыл бұрын
Тут удалось сыграть на том,что w оказалось равно 0. Если нет,то пришлось бы решать кубичное уравнение. Сомневаюсь,что его в общем виде удалось бы решить.
@АлексейСапрыкин-в2к
@АлексейСапрыкин-в2к 3 жыл бұрын
Для алгебраических уравнений до четвёртой степени включительно есть методы решения в общем виде.
@aydankamilova333
@aydankamilova333 3 жыл бұрын
Cox sagol
@artemgolubkov5520
@artemgolubkov5520 2 жыл бұрын
Чем дальше от школьных извращений, тем меньше понимаю зачем. Теорема о симметрических многочленах
@Sergei-Redozubov
@Sergei-Redozubov Жыл бұрын
Неправильная задача. Если неизвестные числа обозначаются разными буквами, то подразумевается, что эти числа - разные. По-другому быть не должно. Если х=0 и у=0, то это либо х, либо у, а не так, что и х и у. Нельзя такие задачи придумывать. Если предполагать, что х может равняться у или z и так далее, то можно далеко зайти. Либо такие подлянки (самое мягкое слово выбрал) надо заранее обговаривать, либо не выставлять такие задачи.
@НикитаИванников-э7ш
@НикитаИванников-э7ш 4 жыл бұрын
Топ
@mathmix1057
@mathmix1057 4 жыл бұрын
Бомба, а не система.
@angelarkon2977
@angelarkon2977 4 жыл бұрын
Это, случайно, не задачи из старых журналов "Квант"?) Помню, там были похожие задачи с системами
@ValeryVolkov
@ValeryVolkov 4 жыл бұрын
Такого типа системы предлагались абитуриентам на вступительных экзаменах в вузы до того, как придумали ЕГЭ.
@s1ng23m4n
@s1ng23m4n 4 жыл бұрын
@@ValeryVolkov хах) Я поступал в универ именно в тот год, когда ввели ЗНО)) Если бы я поступил годом раньше и мне дали бы такую задачу, то хрен бы я ее решил)
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
@@ValeryVolkov Хватит сказки рассказывать. Когда я поступал, вступительные задания по математике на матфак были примерно такие же, какие сегодня на ЕГЭ, без экономических задачек разве что и не припомню чтобы была стереометрия.
@ЕленаПашкова-э3ч
@ЕленаПашкова-э3ч 3 жыл бұрын
@@nikitakipriyanov7260 была стереометрия. В КГУ поступала в 1972. Экономических и на теорию чисел не было. Параметры тоже были.
@epsilonxyzt
@epsilonxyzt 3 жыл бұрын
Bravo!
@Postoronnim-VV
@Postoronnim-VV 4 жыл бұрын
Спасибо за разбор. Но здесь можно оттолкнуться от логических рассуждений. А именно : 1. Сумма любых иррациональных чисел будет недробной тогда и только тогда, когда они равны 0 или 1 по модулю. Почему иррациональных потому что можно представить данную систему, как иррациональную, подставив вместо кубов переменные. 2. Получается 2 варианта: 1+0+0 в разных перестановках, или 1-1+1 в разных перестановках. Второй вариант не подходит, так как при квадратах теряются минуса. 3. Остаётся только вариант первый, значит ответ : (1;0;0), (0;1;0) и (0;0;1)
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
> 1. Сумма любых иррациональных чисел будет недробной тогда и только тогда, когда они равны 0 или 1 по модулю. Это неверно. Например, sqrt(2) - иррациональное, по модулю больше 1, 1-sqrt(2) - иррациональное, по модулю меньше 1. Их сумма sqrt(2) + (1-sqrt(2)) = 1 - целое. Если хотите три положительных числа - легко, например, sqrt(2)/4 ≈ 0.354, sqrt(2)/3 ≈ 0.471 и 1- 7*sqrt(2)/12 ≈ 0.175 в сумме равны 1. А следовательно, и остальные ваши рассуждения также неверны. Вы угадали некоторые корни, но не доказали, что других нет.
@Postoronnim-VV
@Postoronnim-VV 4 жыл бұрын
@@nikitakipriyanov7260 вы взяли за основу доказательства вашей правоты квадратный корень. Я же имел ввиду и квадратный и кубический. Чтобы проще было понять. Возьмите за переменную x^3=a. Будет ясно, что и первая строка системы и вторая будут иррациональными корнями с целым числом в сумме. Потому так скажу, что здесь интуитивно корни видны и понятны. Если бы была система построена иначе, как-то сложнее, то согласился бы. Но не в данном случае. Здесь же всё очевидно, и усложнять решение нет необходимости.
@Postoronnim-VV
@Postoronnim-VV 4 жыл бұрын
@@nikitakipriyanov7260 и насчёт вашего примера... Вы же видите глазами, что х, у, z принадлежат промежутку [0;1]. Это очевидно по второй строке системы. Но вы не найдёте ни одной пары и уж тем более тройки иррациональных подкоренных чисел, дающих в сумме 1. Это ясно так же как и нельзя делить на 0.
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
@@Postoronnim-VV "Интуитивно", "это очевидно", "это так же ясно, как" и тому подобное - это очень здорово, возможно, действительно очевидно и ясно, но увы, за доказательство это не сойдёт, и ни на какой олимпиаде, ни тем более на ЕГЭ вы баллов за это не получите, а статью в научный журнал с подобными свидетельствами вам рецензенты просто вернут с предложением доработать. К тому же, вы даже этого в исходном тексте не написали, а написали только одно явно неверное "очевидное" утверждение. А всё просто. Надо доказывать. Точка. Добавлю. Интуиция имеет право основываться на неверном утверждении. Мышление - не математика, ассоциативные ряды неверность утверждения не ломает (а иногда, наоборот, даже стимулирует). В данном случае действительно неверное утверждение помогает быстро угадать ответ, я вполне допускаю, так с вами и было. Надо понимать, что это случайность, так бывает далеко не всегда. Важно, что каким бы способом вы сами ни пришли к ответу, когда вы будете показывать решение другим, это уже математика и решение уже нужно будет обосновывать строго.
@АлексейСапрыкин-в2к
@АлексейСапрыкин-в2к 3 жыл бұрын
> Но вы не найдёте ни одной пары и уж тем более тройки иррациональных подкоренных чисел, дающих в сумме 1. Совершенно не понимаю, что вы имеете ввиду. Вам привели примеры, когда два или три иррациональных числа в сумме дают рациональные. Или вам необходимо, чтобы они все были на интервале от 0 до 1? Такие примеры тоже нетрудно найти. > Я же имел ввиду и квадратный и кубический. Я правильно понял, вы утверждаете, что сумма иррациональных чисел, сумма их квадратов и кубов не может быть целым числом одновременно? Вот вам система: x+y+z=1 x²+y²+z²=5 x³+y³+z³=4 Все три числа x, y, z более чем иррациональные. И их сумма, сумма квадратов и сумма кубов более чем целые. Скажу больше - сумма этих чисел, возведённых в любую целую степень, будет целым. Может я недостаточно хорошо понял вашу мысль. Но если это так, то это только потому, что вы недостаточно хорошо пытались её донести.
@maratkourbanov3657
@maratkourbanov3657 4 жыл бұрын
Валерий, здравствуйте! Прошу вашей помощи с решением системы из двух уравнений 1-e: y * (x^3 - y^3) = 7, 2-e: y * (x^2 + y^2) = 5. Одно решение очевидно - (2,1) , поэтому срабатывает подстановка x = y+1. Но решить ее в общем виде никак не получается, посему обращаюсь к Вам. С уважением!
@АйнурЗагидуллин-м6м
@АйнурЗагидуллин-м6м 3 жыл бұрын
Почему у разных переменных х у z есть одинаковые значения в тройке ответов???
@frederikasderikas1365
@frederikasderikas1365 3 жыл бұрын
(1, 0, 0) и др. подобные тройки.
@Виктор-ч3я9к
@Виктор-ч3я9к 2 жыл бұрын
Плохая задача, противоречит элементарной логике, воспитывает идиотов.
@ГеннадийНикифоров-м7п
@ГеннадийНикифоров-м7п 3 жыл бұрын
Как это решение совместить с молотком и напильником?
@fivestar5855
@fivestar5855 4 жыл бұрын
То чувство, когда решил систему в уме, а не вот это вот всё 🤣
@ВасильМигович-ш5п
@ВасильМигович-ш5п 4 жыл бұрын
Одно дело подобрать решение в уме, другое - доказать, что других решений нет (иррациональных, например). Сможете в уме? Я - нет.
@barackobama2910
@barackobama2910 4 жыл бұрын
@@ВасильМигович-ш5п я примерно это же проделал в уме а заодно представил себе пересечение плоскости (первое уравнение) сферы (второе) и "угловатой поверхностий" третье.
@ВасильМигович-ш5п
@ВасильМигович-ш5п 4 жыл бұрын
@@barackobama2910 Кстати, да, я про плоскость и сферу не подумал.
@lecturer_abramenkova
@lecturer_abramenkova 4 жыл бұрын
Ребята, привет! На моем канале видео для вас 😀 советы первокурсникам!)
@iamnulll
@iamnulll 3 жыл бұрын
А что с решением, в котором х=-a, y=a, z=1?
@jakkima1067
@jakkima1067 3 жыл бұрын
Система не имеет границ. Даже хаотичная постановка степеней не повлияет на результат)
@trolltrollskiy
@trolltrollskiy 4 жыл бұрын
А что за QR код?
@ValeryVolkov
@ValeryVolkov 4 жыл бұрын
Это ссылка на Donationalerts для желающих поддержать канал.
@АлексейСевостьянов-в4ю
@АлексейСевостьянов-в4ю 4 жыл бұрын
РЕШИЛ БЫСТРО. ПЛАСТИКОВЫЕ ТАПОЧКИ ДЛЯ ДУША СТОЯТ СТО РУБЛЕЙ И НОСЯТСЯ МНОГО ЛЕТ. СКОЛЬКО КУПИШЬ ТАПОЧЕК ИСЛИ ПРОДАШЬ ПАРУ ЛЕТНЕЙ ДОРОГУЩЕЙ ОБУВИ.
@vladimir-234
@vladimir-234 3 жыл бұрын
Что считать дорогой обувью. 200, 500 или 1500 дол.?
@CubesUnpacking
@CubesUnpacking 4 жыл бұрын
Зачем нужен qr код?
@ValeryVolkov
@ValeryVolkov 4 жыл бұрын
Это ссылка на Donationalerts для желающих поддержать канал.
@pronyx8532
@pronyx8532 2 жыл бұрын
С одного взгляда видно корни: 1, 0, 0 0, 1, 0 0, 0, 1
@maratosmsk5498
@maratosmsk5498 4 жыл бұрын
Интересно, а можно ли это как то графически решить?
@alexl6671
@alexl6671 4 жыл бұрын
Можно, но не все понимают что такое x^3 + y^3 + z^3 = 1
@СнежныйБарс-г2я
@СнежныйБарс-г2я 4 жыл бұрын
161//24.08.2020. Дела-а-а...
@Артьомдругартем
@Артьомдругартем 4 жыл бұрын
Хорошее решение.Но... Меня заинтересовало,может ли эта система иметь комплексные корни. И я обозначил y и z через комплексно сопряжённые a+bi и a-bi. В этом случае сумма этих чисел,сумма квадратов и сумма кубов будет действительным числом. Дальше для a получилось 3 корня. a=0,a=1/2 и a=0.6 К сожалению,последние два значения не подходят. Ну,а дальше получается b=0 и x=1. Ну и в силу симметрии 3 решения.
@MO-sv4hc
@MO-sv4hc 4 жыл бұрын
Слишком длинное решение. Не проще ли было показать, что кроме корней, один из которых равен 1, а остальные - нули, решений нет?
@TheMopsR
@TheMopsR 4 жыл бұрын
ну покажи
@ВикторИванов-ю7ю
@ВикторИванов-ю7ю 4 жыл бұрын
0:47 - 1:05
@ІванФедак-й9ъ
@ІванФедак-й9ъ 2 жыл бұрын
@@TheMopsR На множині дійсних чисел цю задачу розв'язують усно, навіть без першого рівняння. З другого рівняння випливає, що у ньому всі доданки зліва не перевищують 1. Але тоді доданки третього рівняння не більші відповідних доданків другого. Але їх сума також 1, то вони рівні відповідним доданкам другого рівняння, що можливо лише за умови, що вони дорівнюють або 1, або 0. Зрозуміло що 1 має бути один раз, а 0 - двічі. Перше рівняння такий набір також задовольняє.
@pasahuseynov3652
@pasahuseynov3652 4 жыл бұрын
Na doroqe smotrel vashi zadaci doskanalno ne bilo vremeni xoroshie zadaci odnu otpravlyu ya
@АрсенийКостерин-ж3л
@АрсенийКостерин-ж3л Жыл бұрын
Дубльву
@Андрей-я7и1с
@Андрей-я7и1с 3 жыл бұрын
Вот мне одному что ли понятно из системы сразу без решения ее что х равен 1, либо у равен 1 , либо z равен 1 , соответственно другие переменные по нулям ? Зачем решать то , что сразу видно????
@ФеликсФеликсовичЛюбченко
@ФеликсФеликсовичЛюбченко 3 жыл бұрын
Изначально понятно что одна из переменных равна 1,остальные -0.Без вариантов.За доказательство "пять"
@Бача-студент
@Бача-студент 3 жыл бұрын
1;0;0. Это же и так ясно. И зачем такое сложное решение? Одна фраза в начале ролика была правильной, а все остальное - трата времени.
@pasahuseynov3652
@pasahuseynov3652 4 жыл бұрын
Eşli ishetsa celie reshenie eto ort vektori v prostranstve (1;0;0)(0;1;0)(0;0;1
@so_long_world
@so_long_world 4 жыл бұрын
Я один называю “W” дабл-ю?
@ВикторИванов-ю7ю
@ВикторИванов-ю7ю 4 жыл бұрын
А как Вы сами думаете?
@ValeryVolkov
@ValeryVolkov 4 жыл бұрын
В математике используют латинский алфавит, согласно которому буква W произносится как дубль-вэ.
@ВикторИванов-ю7ю
@ВикторИванов-ю7ю 4 жыл бұрын
@@ValeryVolkov Самое смешное, что прочтение "u" как "у" или "a" как "а", "b" как "бэ", "c" как "цэ" и т.д., вопросов не вызывает, а вот на "w" регулярно просыпаются "англоговорящие" :)
@wozzeck8831
@wozzeck8831 4 жыл бұрын
@@ValeryVolkov Валерий! Кстати, к Вам такой вопрос! Почему, когда речь идёт о новых переменных в уравнениях, чаще вводят буквы z, t, u, v, w. Ведь есть куда проще - а, в, с, d! А вероятность этих букв ничтожно мала)) 😆 за свою жизнь ни разу не услышал «введём новую переменную а» 😆
@wozzeck8831
@wozzeck8831 4 жыл бұрын
@@ВикторИванов-ю7ю это точно, особенно «интересны» варианты таких букв как q, j))) 😆
@allahakbar7
@allahakbar7 4 жыл бұрын
Тот момент когда решение нашел решение быстрее автора, потому что чисто догадаться можно что одно число 1 равно а два других 0
@nikitakipriyanov7260
@nikitakipriyanov7260 4 жыл бұрын
Здорово, а ещё вам нужно быстрее автора доказать, что других решений не может быть.
@allahakbar7
@allahakbar7 4 жыл бұрын
@@nikitakipriyanov7260 их не может быть по причине того что все переменные возрастают по степени, соответственно здесь может быть только одно решение
@ИзяШнобельман
@ИзяШнобельман 4 жыл бұрын
До этих подстановок не додумался, но сразу увидел (1; 1; 1)
@Math_and_Phys
@Math_and_Phys 4 жыл бұрын
Ыыы, можно было просто угадать, одна переменная единичка, две другие 0... Ну и да, совместная система 3ей степени, 3 решения.
@Анна-п4й4ж
@Анна-п4й4ж Жыл бұрын
так и решила
@danika1407
@danika1407 4 жыл бұрын
Спасибо!
Решите уравнение: 5^(2+4+6+⋯+2x)=0,04^(-28)
3:41
Valery Volkov
Рет қаралды 14 М.
Как решать такие системы?
8:45
Valery Volkov
Рет қаралды 204 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 30 МЛН
ТЫ В ДЕТСТВЕ КОГДА ВЫПАЛ ЗУБ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 4,3 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,4 МЛН
Самая красивая система
8:27
Valery Volkov
Рет қаралды 164 М.
Как найти обратную матрицу?
5:17
Высшая Математика с Dr Nev
Рет қаралды 6 М.
Как решать? Не знаю!
7:23
Valery Volkov
Рет қаралды 78 М.
When u fight over the armrest
00:41
Adam W
Рет қаралды 30 МЛН