【正答率1%】海外で50万再生超えの整数問題が衝撃すぎたww

  Рет қаралды 137,446

PASSLABO in 東大医学部発「朝10分」の受験勉強cafe

PASSLABO in 東大医学部発「朝10分」の受験勉強cafe

Күн бұрын

整数問題をもっと学びたい方は全パターン解説へ
• 【整数問題】入試頻出解法を”4時間で”全パタ...
今回の動画の引用元
• Solving the hardest qu...
今日のパスチャレはこちら↓
note.com/pfsbr123
~~~~~~~~
■ 東大現役合格→トップ成績で医学部に進学した僕の超戦略的勉強法
(宇佐見天彗+PASSLABO著)
amzn.to/2FOboO3
全国の書店でもご購入いただけます。
■ 早期購入者特典受け取りフォーム(2020年10月24日まで)
forms.gle/hENM...

このフォームからしか受け取れません。
お手元に書籍が届いてからご記入ください。
■サイン本プレゼント企画
(2020年10月3日まで)
to...
■試し読みはこちら
to...
~~~~~~~~~~~~~~~~
■東大医学部発「朝10分」の受験勉強cafe
PASSLABOのチャンネル登録
→ / @passlabo
■東大生たちと一緒に勉強したい方必見!
公式LINE@登録はコチラから
→ line.me/R/ti/p/...
(勉強法や質問相談はLINE LIVEにて配信予定!!)
======
【君のコメントが、動画に反映されるかも!】
問題の解説希望やリクエストあれば、好きなだけ載せてください。
1つ1つチェックして、役立つものは動画にしていきますね^ ^
======
■偏差値43から東大合格までの勉強法がまとめて知りたい方
→ amzn.to/2GRW3tL
■公式Twitterはコチラ
→ / todai_igakubu
===========
■PASSLABOメンバー情報(note)
*気になるメンバーのnoteをチェック!!
「1」宇佐見すばる
東大医学部 / PASSLABO室長
→ note.mu/pfsbr1...
「2」くぁない
早稲田 / PASSLABO切り込み隊長
→ note.mu/pfsbr1...
「3」あいだまん
東大逆転合格/ PASSLABO歌のお兄さん
→ note.mu/pfsbr1...
「4」くまたん
東大文一1点落ち?/PASSLABO癒しキャラ
→ note.mu/pfsbr1...
===========
#PASSLABO
#東大医学部発
#概要欄も見てね♪
朝6時半にほぼ毎日投稿!
一緒に動画で朝活しよう

Пікірлер: 149
@ういあびふ
@ういあびふ Жыл бұрын
整数問題解いていて、毎回思うのは作問者が天才すぎる。
@篤史杉崎青柳家
@篤史杉崎青柳家 Жыл бұрын
ありがとうございます!
@dreamer4957
@dreamer4957 3 жыл бұрын
見た目だけで言うと今まで見てきた整数問題の数式の中で一番エグイ
@juntakooooo3014
@juntakooooo3014 2 жыл бұрын
それな!
@72haf
@72haf 3 жыл бұрын
久し振りに見たらすばるさんかなり髪伸びましたね 相変わらず紹介してる問題も手応えあるし、解説もわかりやすくて登録者数の伸びも納得です
@kujirachan7489
@kujirachan7489 3 жыл бұрын
初手で (a!-1)(b!-1)=c!+1と等式を変形すると、aとbのいずれかが1の場合は0=c!+1, 2の場合は a!=c!+2 でaが3以上となった場合、cも3倍, 4倍と追従する必要があるため+2を満たすcはとりえないというのが直感的に分かると思いました!ただし、この変形だとa, bが3以上の時の説明が上手くできず、解説参考になりました!
@gumi8778
@gumi8778 3 жыл бұрын
解ける自信はないけどできる所まで 対称性よりa≦bとする b≧cのとき a!b!=a!+b!+c!≦3b! a!≦3 よりa=1,2 それぞれ b!=1+b!+c!⇔1+c!=0不適 2b!=2+b!+c! ⇔{b(b-1)....(c+1)-1}c!=2より c=1かつb(b-1)....(c+1)-1=2 b!=3となり不適 a=1,2に関してba+2のとき 0≡2+0より不適 よってc=a+1,a+2 c=a+1のとき a!=2+(a+1)=a+3 ⇔a{(a-1)!-1}=3 aが3の倍数なのでa=3しかなく、十分性を満たす c=a+2のとき a!=2+(a+2)(a+1) mod(a)において0≡2+2=4より a=4となるが4!=24
@kskngn6445
@kskngn6445 3 жыл бұрын
a!-a^2-3a=4を満たす3以上の整数が存在しないことの証明は次のようにするのはいかがですか。 左辺をaでくくると  a { (a-1)!-a-3}=4 として、これを満たすためにはaは4の約数しかあり得ない。そこでa=4を入れると成り立たないので不適。
@a5556-g6z
@a5556-g6z 3 жыл бұрын
(・_・?)??
@kskngn6445
@kskngn6445 3 жыл бұрын
@@a5556-g6z 14:20あたりのところです。 a≧3から(a-1)!-a-3は整数となるのでaは4の約数でないといけないと思ったのですが…
@a5556-g6z
@a5556-g6z 3 жыл бұрын
@@kskngn6445 約数っていうの見落としてました🙏
@まっちゃん-m2m
@まっちゃん-m2m 3 жыл бұрын
すげえ
@n.r.3569
@n.r.3569 3 жыл бұрын
どれか2つが一致しないといけないことに気づけば後は早いけど、そこまでがなかなか難しいなぁ
@n.r.3569
@n.r.3569 3 жыл бұрын
それ自体は簡単に示せる a,b,cがx,y,zのどれかに1つずつ対応するとする x≦y≦zとすると以下mody!で考えて y!≡z!≡0 ここで a!b!≡0 (a,bどちらかはyかzになる) a!b!=a!+b!+c!より 0≡x!+y!+z!≡x! つまりx!はy!の倍数かつx≦yでx=y
@ああーー-e6t
@ああーー-e6t 2 жыл бұрын
モディ!
@侍ふ君
@侍ふ君 Жыл бұрын
東大医学部の問題も、こんなやり方で解けるんですね。面白かったです。
@tak04
@tak04 Жыл бұрын
a≧3のときは 5b!-c!≦6 という不等式になるのでb=3,c=4 ぐらいしかない。
@kazprivici3618
@kazprivici3618 3 жыл бұрын
概略 与式 a!b! = a!+b!+c! a,bに関する対称性から a>=b とする。 左辺=右辺は b! の倍数だから c>=b b=cと仮定すると、a!b!-a!-2(b!)=0 だが、これを満たす自然数a,bは存在しない。 したがって、c>=b+1 となる。 b=1 のとき c!+1=0 となって不適 b=2 のとき a! =c!+2 となって不適 (階乗同士の差が2になることはない) b=3 のとき 5(a!)=c!+6 右辺が5の倍数であることからc=4のとき (b!-1)a! = b!+c! a>bと仮定すると、左辺が(b+1)!の倍数だが、c>bなので右辺は(b+1)!の倍数でなくなり矛盾する。 よって a=b となり、(b!-2)b! = c! 両辺をb!で割ると、b!-2 = (b+1 から始まるいくつかの連続した整数の積) b>=4より b!-2 を4で割った余りは2だから、右辺は高々3個の連続した整数の積。 b b!-2 b+1 (b+1)(b+2) (b+1)(b+2)(b+3) 4 22 5 30 210 5 118 6 42 336 6 718 7 56 504 となってb=7のとき、b=6を起点とする数学的帰納法によって (b! - 2) - (b+1)(b+2)(b+3) > 0がいえるので、 b>=4 では成立しない。 a>=bの下での唯一の解はa=bを満たすため、(a,b,c)=(3,3,4) が唯一の解である。
@ひであき-w9t
@ひであき-w9t Жыл бұрын
スクショの内容が、メモになっちゃってる。模範解答の形も欲しいです
@隠し子
@隠し子 3 жыл бұрын
すばるくんからな阪関無が聞けるとは思ってなかった笑
@多田晋也
@多田晋也 3 жыл бұрын
何とか自力で解けました・・・いや~キツかった。ちゃんと答えもあっててよかったです。 私の場合は、a=bの場合と、a
@もるちスマホで作曲
@もるちスマホで作曲 3 жыл бұрын
同じ方法を使いました!
@teenmom630
@teenmom630 3 жыл бұрын
すごい、、、笑
@say4900
@say4900 3 жыл бұрын
334は笑ってしまったww
@らすく-l4u
@らすく-l4u 3 жыл бұрын
@腰からおはぎ お前の考えてるのは33-4 コメ主の言ってるのは334だ間違えるな
@mr.morinonaka8657
@mr.morinonaka8657 3 жыл бұрын
@@らすく-l4u こわw
@ベスースラリン
@ベスースラリン 7 ай бұрын
パッと見て、大小関係による消去法ですね。式形が面白い🎵
@bake3209
@bake3209 Жыл бұрын
3
@いちごカー
@いちごカー 3 жыл бұрын
これ阪神オリンピックの問題ですよ。
@亘-k4h
@亘-k4h 3 жыл бұрын
あと3倍角の問題ありそう
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@poqonnobody4148
@poqonnobody4148 3 жыл бұрын
あらたな334の伝説が生まれてしまった。
@あんく-g3w
@あんく-g3w 2 жыл бұрын
気持ち悪い
@AristotleJp
@AristotleJp 2 жыл бұрын
b=a+k(kは非負整数)とすると、 (与式)⇔a!•(a+k)!-a!-(a+k)!=c! ⇔(a+k)!(a!-1)=a!+c! k>0と仮定すると、 (左辺)≡0(mod(a+1))より(右辺)≡0が条件 ここでc>aより(右辺)≡a!となり矛盾(動画の通りc>aを示す)となりa=bとまとめa,bを導出しました
@ひま-n2c
@ひま-n2c 3 жыл бұрын
a.bを対称式にしてるから本来なら気をつけなきゃ行けないポイント使わないのね.
@channel-mk8ig
@channel-mk8ig 3 жыл бұрын
勘で3、3、4かなって思ったけど、それ以外について考えるのが難しかった。
@ojamesi8683
@ojamesi8683 Жыл бұрын
自分は2で割り切れる回数に注目してcを絞りましたが、少々遠回りでした…
@地方のしがない受験生
@地方のしがない受験生 3 жыл бұрын
なんでや阪神関係ないやろ!
@あんく-g3w
@あんく-g3w 2 жыл бұрын
野球ファン気持ち悪い
@hatahata-j3h
@hatahata-j3h Жыл бұрын
んでや阪神関係ないやろ!
@そおらと
@そおらと 11 ай бұрын
でや阪神関係ないやろ!
@uiuishitekita
@uiuishitekita 9 ай бұрын
や阪神関係ないやろ!
@user-ib9vq1bk5h
@user-ib9vq1bk5h 6 ай бұрын
阪神関係ないやろ!
@遠公
@遠公 Жыл бұрын
1から9まで階乗した数字を書き出して、これ以上大きいとこりゃ無理だ。 a!(b!−1)=b!+c!の式と見比べて 6+24=30、6×5=30だぁ …で偶然解けました。
@孝史石本
@孝史石本 Жыл бұрын
やっぱり整数問題の2時間動画をちゃんと見ないとダメだな〜!面白いんだけど、理解が進まない😢
@miky2170
@miky2170 Жыл бұрын
これは5!まで計算して順番に入れていくで証明可能だよね 階乗はあまりの増え過ぎで加法が入ると式での証明の必要性がなくなるよ
@user-me1dh9bx7t
@user-me1dh9bx7t 3 жыл бұрын
しぼり込みの方針はあってたけど多分じっさいとくと途中の場合わけで減点食らいそうな気がする🤗
@johnta1010
@johnta1010 3 жыл бұрын
別解求めたけどアカンかった (a!-1)(b!-1)=c!+1 と変形して、5(10,15)以上の階数が10(100,1000)の倍数である事を使ってなんとかならんかなと思ったんだけど。。。
@mathseeker2718
@mathseeker2718 3 жыл бұрын
私も同じ式変形を考えましたが、、 解けませんでした。
@雪奈-k7t
@雪奈-k7t Жыл бұрын
a! - a^2 - 3a = 4で aは4の倍数は(簡単に)導けないですね 例えば、a=5の時、LHSは4の倍数になるでしょうか
@fclfc1039
@fclfc1039 3 жыл бұрын
1から解けました!発想の順をコメントしますので参考になれば (a!-1)(b!-1)=c!+1を数分検討、主に余りに注目したがa,b,cが十分大きい時、modpにおいて 左辺=右辺=1で無意味と感じここでストップ 対称じゃん→a≦bに気づく。さらに自然数条件から絞るのだろうと予想をつけ両辺をa!で割る。 b!=1+b!/a!+c!/a!の式を眺める。c!/a!が整数でなければならないためa≦c さらにここから実験と検討で数分。この状態で余りに注目したいと感じmod(a+1)を考えつく(気持ちとしてはb,cを上から抑えたかった) この結果a
@happyman-jw6sx
@happyman-jw6sx 3 жыл бұрын
そういう解法ってどうやって思いつくのですか?経験?センス?
@fclfc1039
@fclfc1039 3 жыл бұрын
@@happyman-jw6sx 整数は特に好きなので経験が大きいと思います。センスはその中で培われたかと思います。その結果なんとなくこの技術を使おうっていう経験則が出来たのかと。
@happyman-jw6sx
@happyman-jw6sx 3 жыл бұрын
@@fclfc1039 ありがとうございます!
@rapi8032
@rapi8032 3 жыл бұрын
おはようございます!
@with9083
@with9083 2 жыл бұрын
現役高校生です。自分はこの様に解きました。 解答として入試本番に記述に書いても大丈夫なものになっていますでしょうか? 対称性よりa≦bとしても一般性は失われない。 ここで (与等式)⇔(a!−1)(b!−1)=C!+1(①と置く) よりb<Cとなることは自明である。 よって、①について右辺を超えない最大の左辺を考えると {(C−1)!−1}^2=C!+1 ⇔(C−1)!−2=C これを満たすCは4よりC≦4 (i)C=4のとき、①より (a!−1)(b!−1)=25 ∴a=b=3 (ii)C=3のとき、①より (a!−1)(b!−1)=7 これを満たすa、bはないので不適 これを (iii)C=2のとき (iv)C=1のとき と調べっていくと題意を満たすa、b、Cの組は (a、b、C)=(3、3、4) のみである。
@こまーん
@こまーん 2 жыл бұрын
b<Cが自明なのは何故 a=2のとき (b!-1)=C!+1となりb>Cですけど
@馬鹿-d3d
@馬鹿-d3d 2 жыл бұрын
難しかったけど何とか解けた! 最近、数学に自信なかったけどちょっと取り戻せた…
@貞子-b5b
@貞子-b5b Жыл бұрын
名前間違ってて草
@レザウルカリム
@レザウルカリム 3 жыл бұрын
なぜ、11:11のa+1
@nuu2416
@nuu2416 3 жыл бұрын
a,b,cは自然数なので<を≦でcを評価するために+1をしています
@ファミパンaka剛腕
@ファミパンaka剛腕 3 жыл бұрын
教えましょう! a
@kaito1602
@kaito1602 2 жыл бұрын
c=a+2の時はa! , -3a が三の倍数。-a^2を三で割った余は0 または2 。これは、4を三で割った余りが一であることに矛盾する。よって不適。
@Nashicya._.N
@Nashicya._.N 3 жыл бұрын
微積解説して頂きたい…
@りな-p9b
@りな-p9b 3 жыл бұрын
これ一橋駿台模試過去問で同じではないけど似たヤツあったな
@篤史杉崎青柳家
@篤史杉崎青柳家 Жыл бұрын
徳に要るの技法の道 まっしぐら!
@masayaal
@masayaal 3 жыл бұрын
33-4
@MT車取りたい
@MT車取りたい Жыл бұрын
9:35 のbとcの大小の評価のところ、普通にbがcより大きかったら分数になってしまうからって理由でb<cと置けないですか?
@ryuseik6579
@ryuseik6579 Жыл бұрын
b=cの場合、c!/b!=1となりますので、これが不適であることを別で証明する必要がありますね。 この解法ではb>=cが不適であることを、a>=3の大小関係を使って一気に証明していることから、b
@keicat523
@keicat523 3 жыл бұрын
すみません。あまり関係ないかもなのですが質問です。 aⁿ+bⁿ=1 aⁿ-bⁿ=1 nは3以上の自然数 っていうのを成り立たせる解は ありますか?フェルマーの最終定理を用いずにときたいのですが…
@user-yoshi1123
@user-yoshi1123 2 жыл бұрын
a,b,nが自然数ということなのであれば、少なくともa^n+b^n=1を満たすものはないのでは? a=b=n=1というのが左辺の最小の場合ですが、これでも2となってしまうので。
@のぶ-x2k
@のぶ-x2k Жыл бұрын
a,bを複素数として、これはaⁿ,bⁿの連立1次方程式なので、aⁿ=1,bⁿ=0となり、b=0となります。 また、1の原始n乗根をwとして、a=w^k(kは整数)と書けます。 nは任意です。
@かたつむりさん-o3k
@かたつむりさん-o3k 3 жыл бұрын
9:13 bはcより上…?
@Gold_bahha
@Gold_bahha 3 жыл бұрын
5:43 なんでや!阪神関係ないやろ!
@あんく-g3w
@あんく-g3w 2 жыл бұрын
気持ち悪い
@tetsuoyoshida8709
@tetsuoyoshida8709 3 жыл бұрын
5:52な阪関無
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@REDHOMREDHOM
@REDHOMREDHOM Жыл бұрын
7:15 本家はa! 、ここではb!で割ってるけど (a+1)!で割ると 整数=1/(a+1)+整数+整数 でスッキリする
@ターユ
@ターユ 3 жыл бұрын
イギリスはアンチ阪神だった・・・?
@あんく-g3w
@あんく-g3w 2 жыл бұрын
気持ち悪い
@パンドラの箱の中身
@パンドラの箱の中身 3 жыл бұрын
阪神のオリンピックってなんだよwwwww
@gonbread
@gonbread 3 жыл бұрын
334…
@熊本よしもと
@熊本よしもと 3 жыл бұрын
解法違ったけどなんとかできました。数オリ近いのでありがたいです、、
@kiichiokada9973
@kiichiokada9973 3 жыл бұрын
8:55 3!=6>3だからダメってことか。
@route496
@route496 3 жыл бұрын
最後ぐだってるなぁ…。 a!-a^2-3a=4 で aは4の倍数ってどういうことだ…(a=2とかで普通に左辺が4の倍数になるし。) aでくくって約数で一発(せいぜいa=4,2で代入くらい)だし、 "あまりにもこうだから"とは… a!をa^2とかa^3のオーダーでおさえるのは入試レベルでもふつうにやる気がするが。今回の場合a>4で a!>2*a^2 で十分示せるし。。
@poloaotomato
@poloaotomato 3 жыл бұрын
a!-a^2-3a=4 a!-a^2+3a=4 ごっちゃにしてへん?
@route496
@route496 3 жыл бұрын
@@poloaotomato ぐだってたのは俺の方やったわ。すまん。
@ryomiyazawa822
@ryomiyazawa822 Жыл бұрын
ここは正しくは4がaの倍数(aが4の約数)ですよね
@route496
@route496 Жыл бұрын
@@ryomiyazawa822 だと思います!
@user-yoshi1123
@user-yoshi1123 Жыл бұрын
modで絞り込めないタイプの階乗問題はきしょい
@L3ss_Kabos_GG
@L3ss_Kabos_GG Жыл бұрын
1番上のコメントで答えバラされてわろた
@gakia8002
@gakia8002 3 жыл бұрын
元の動画も見てきたけど、難問だけに説明のレベルが追い付いていない印象。
@メロンソーダ-g4j
@メロンソーダ-g4j 3 жыл бұрын
政経で全然取れません。参考書の使い方の手元解説をぜひお願いしたいです。もう時間がないのでお願いします🙇‍♂️
@リンフォード
@リンフォード 3 жыл бұрын
A!B!C!から、C!をとったらえーびっ…
@barbaragordon_
@barbaragordon_ 3 жыл бұрын
Why KZbin recommended me this???😂 wish I could understand… I’m so bad at math
@ぺそりけ
@ぺそりけ 3 жыл бұрын
連続するn個整数はnのかいじょうでうんたらかんたら
@HinaTanukinTV
@HinaTanukinTV 3 жыл бұрын
なんでや!阪神関係ないやろ!!w
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@chintake
@chintake 3 жыл бұрын
なんでや!阪神関係ないやろ!
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@overcapacitywhale
@overcapacitywhale 3 жыл бұрын
30秒くらいで解けました。a=bのときが少し苦労しました。
@SAENS_yellow
@SAENS_yellow 3 жыл бұрын
阪神で草
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@時時雨-o6w
@時時雨-o6w 3 жыл бұрын
なんか、こういうの入試で見たような気がする もう少し簡単だったけど
@wawiwuwewo0101
@wawiwuwewo0101 Жыл бұрын
すべてが難しかった
@user-hakihakihakihaki
@user-hakihakihakihaki 3 жыл бұрын
これが本番解ける気しない
@Merham2314
@Merham2314 3 жыл бұрын
コメ欄の人達のレベルが高い……
@ゆっくりケンシロウ先輩
@ゆっくりケンシロウ先輩 3 жыл бұрын
初見で解けるんかな
@torikkuru
@torikkuru 3 жыл бұрын
な阪関無
@ファミパンaka剛腕
@ファミパンaka剛腕 3 жыл бұрын
3:25 aとbを入れ替えても同じ⇒ a≦bとしても問題ない のは感覚としてなんとなくわかるけど、証明しろ とか言われたらどうすればいいだろう
@myaya777
@myaya777 3 жыл бұрын
交換法則と結合法則でいいのでは?
@small_cute7
@small_cute7 3 жыл бұрын
自分でa≦bって仮定してるだけだから証明とかそういうことではないんじゃない?
@ジョン永遠
@ジョン永遠 2 жыл бұрын
a≦bとしても「問題ない」ではなく,「一般性は失われない」です.その意味するところは 「a>bではない」とか「a>bの可能性はない」ということではありません. 「a>bかもしれないが,そのときは aをb, bをaだと思えばいい,つまりaとbの入替えをすればいい」から「a≦bの場合だけ考えてもいい(=一般性を失わない)」ということ.ではなぜaとbの入替えが許されるのか?といえば,それは式がaとbについて「対称」だから.式におけるaの立場とbの立場=役割が同じだからです.対称でない場合は入替えは許されません.(aとcのように) 本問では解がa=bだったので不要でしたが,もしabとなる)解も追加しておかなければいけません.そうでないと解の一部を取りこぼしてしまいます.忘れがちなので要注意.
@dele1942
@dele1942 3 жыл бұрын
ソースくらい貼ってくれよー
@dele1942
@dele1942 3 жыл бұрын
自分で調べろ
@ぽめ-h6m
@ぽめ-h6m 3 жыл бұрын
セルフツッコミ草
@ぽめ-h6m
@ぽめ-h6m 3 жыл бұрын
草ってなんだよ
@JunyaS.
@JunyaS. 3 жыл бұрын
そのコメントが一番いらん
@passlabo
@passlabo 3 жыл бұрын
概要欄にあります!
@興味ビンビンでねお前のこと
@興味ビンビンでねお前のこと 3 жыл бұрын
コロンブスの卵よなぁ
@山田の太郎-j4x
@山田の太郎-j4x 2 жыл бұрын
な阪神関係
@どんぐり-j2f
@どんぐり-j2f 3 жыл бұрын
3,3,4草
@yutokomori6100
@yutokomori6100 3 жыл бұрын
3 3 4 チーーーーーーーーーーーーン
@あんく-g3w
@あんく-g3w 2 жыл бұрын
気持ち悪い
@りく-j1y
@りく-j1y Жыл бұрын
なはんせきむ
@もるちスマホで作曲
@もるちスマホで作曲 3 жыл бұрын
30分かかったwwwww
@Relaxingchannel-lc5rv
@Relaxingchannel-lc5rv 3 жыл бұрын
むずくないやんけ
@篤史杉崎青柳家
@篤史杉崎青柳家 Жыл бұрын
ボク、は ゴールのある数学を NEC 特許取得のち数検合格講師🌸 でした 技法数学 NEC ネットワーク特許取得2000年 徳のある道
@Anemone1665
@Anemone1665 3 жыл бұрын
33-4の33は阪神です
@なーさん仮
@なーさん仮 3 жыл бұрын
5:44 なんでや!阪神関係ないやろ!
@kounitakaguchi8899
@kounitakaguchi8899 3 жыл бұрын
な阪関無
@minigori
@minigori 3 жыл бұрын
33-4
@あんく-g3w
@あんく-g3w 2 жыл бұрын
きっしょ
@aiueo7700
@aiueo7700 3 жыл бұрын
な阪関無
整数問題の史上最高傑作
15:56
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 107 М.
【検証ドッキリ】東大医学部なら3分で一橋の難問解ける?
11:57
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 319 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
Kyoto University's famous integer problem [Instant kill with technique].
14:28
Stardy -河野玄斗の神授業
Рет қаралды 1,5 МЛН
【正答率鬼低】最恐の整数問題キミは解けるか?!
14:42
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 750 М.
【招待状】整数問題の最高傑作へようこそ【裏技多め】
15:02
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 184 М.
伝説の東大入試、4通りで解け。
15:02
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 177 М.
【奇跡の1問】1分で解ける”京大入試”|数学の勉強法を学べ。
10:57
PASSLABO in 東大医学部発「朝10分」の受験勉強cafe
Рет қаралды 378 М.
力技ではギリきつい【今週の整数#18】
17:18
予備校のノリで学ぶ「大学の数学・物理」
Рет қаралды 127 М.
Difficult University] Master all the patterns of integer problems and make a difference!
12:57
Stardy -河野玄斗の神授業
Рет қаралды 289 М.
【ゆっくり解説】ナッシュ均衡とは何か【ゲーム理論】
15:38
誰でも楽しめる数学の雑学【ゆっくり解説】
Рет қаралды 330 М.